• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.025 seconds

Structures of Fuzzy Relations

  • Min, K.C
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.17-21
    • /
    • 1992
  • In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set. For a complete Heyting algebra L. the category set(L) of all L-fuzzy sets is shown to be a bireflective subcategory of the category Rel(L) of all L-fuzzy relations and L-fuzzy relation preserving maps. We investigate categorical structures of subcategories of Rel(L) in view of quasitopos. Among those categories, we include the category L-fuzzy similarity relations with respect to both max-min and max-product compositions, respectively, as a cartesian closed topological category. Moreover, we describe exponential objects explicitly in terms of function space.

  • PDF

ON EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL EQUATIONS IN BANACH ALGEBRAS VIA FIXED POINT TECHNIQUES

  • Dhage, B.C.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.33-45
    • /
    • 2001
  • In this paper an improved version of a fixed point theorem of the present author [3] in Banach algebras is obtained under the weaker conditions with a different method and using measure of non-compactness. The newly developed fixed point theorem is further-applied to certain nonlinear integral equations of mixed type for proving the existence theorems and stability of the solution in Banach algebras.

  • PDF

MAPS PRESERVING GENERALIZED PROJECTION OPERATORS

  • Hassane Benbouziane;Kaddour Chadli;Mustapha Ech-cherif El Kettani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.717-729
    • /
    • 2024
  • Let 𝓑(H) be the algebra of all bounded linear operators on a Hilbert space H with dim(H) > 2. Let 𝒢𝒫(H) be the subset of 𝓑(H) of all generalized projection operators. In this paper, we give a complete characterization of surjective maps 𝚽 : 𝓑(H) → 𝓑(H) satisfying A-𝛌B ∈ 𝒢𝒫(H) ⇔ 𝚽(A) - 𝛌𝚽(B) ∈ 𝒢𝒫(H) for any A, B ∈ 𝓑(H) and 𝛌 ∈ ℂ.

SOME PROPERTIES OF BILINEAR MAPPINGS ON THE TENSOR PRODUCT OF C -ALGEBRAS

  • Sarma, Anamika;Goswami, Nilakshi;Mishra, Vishnu Narayan
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.977-1003
    • /
    • 2019
  • Let 𝓐 and 𝓑 be two unital C-algebras and 𝓐 ⊗ 𝓑 be their algebraic tensor product. For two bilinear maps on 𝓐 and 𝓑 with some specific conditions, we derive a bilinear map on 𝓐 ⊗ 𝓑 and study some characteristics. Considering two 𝓐 ⊗ 𝓑 bimodules, a centralizer is also obtained for 𝓐 ⊗ 𝓑 corresponding to the given bilinear maps on 𝓐 and 𝓑. A relationship between orthogonal complements of subspaces of 𝓐 and 𝓑 and their tensor product is also deduced with suitable example.

MV -Algebras of Continuous Functions and l-Monoids

  • Choe, Tae-Ho;Kim, Eun-Sup;Kim, Myeong-Og;Park, Young-Soo
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.487-493
    • /
    • 2008
  • A. Di Nola & S.Sessa [8] showed that two compact spaces X and Y are homeomorphic iff the MV -algebras C(X, I) and C(Y, I) of continuous functions defined on X and Y respectively are isomorphic. And they proved that A is a semisimple MV -algebra iff A is a subalgebra of C(X) for some compact Hausdorff space X. In this paper, firstly by use of functorial argument, we show these characterization theorems. Furthermore we obtain some other functorial results between topological spaces and MV -algebras. Secondly as a classical problem, we find a necessary and sufficient condition on a given residuated l-monoid that it is segmenently embedded into an l-group with order unit.

GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS ON A FRESNEL TYPE CLASS

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.223-245
    • /
    • 2011
  • In this paper, we de ne an $L_p$ analytic generalized Fourier Feynman transform and a convolution product of functionals in a Ba-nach algebra $\cal{F}$($C_{a,b}$[0, T]) which is called the Fresnel type class, and in more general class $\cal{F}_{A_1;A_2}$ of functionals de ned on general functio space $C_{a,b}$[0, T] rather than on classical Wiener space. Also we obtain some relationships between the $L_p$ analytic generalized Fourier-Feynman transform and convolution product for functionals in $\cal{F}$($C_{a,b}$[0, T]) and in $\cal{F}_{A_1,A_2}$.

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS: REVISITED

  • Cho, Young;Jang, Sun Young;Kwon, Su Min;Park, Choonkil;Park, Won-Gil
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • Bae and W. Park [3] proved the Hyers-Ulam stability of bi-homomorphisms and bi-derivations in $C^*$-ternary algebras. It is easy to show that the definitions of bi-homomorphisms and bi-derivations, given in [3], are meaningless. So we correct the definitions of bi-homomorphisms and bi-derivations. Under the conditions in the main theorems, we can show that the related mappings must be zero. In this paper, we correct the statements and the proofs of the results, and prove the corrected theorems.

THE WEAK F-REGULARITY OF COHEN-MACAULAY LOCAL RINGS

  • Cho, Y.H.;Moon, M.I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • In [3], [4] and [5], Hochster and Huneke introduced the notions of the tight closure of an ideal and of the weak F-regularity of a ring. This notion enabled us to give new proofs of many results in commutative algebra. A regular ring is known to be F-regular, and a Gorenstein local ring is proved to be F-regular provided that one ideal generated by a system of parameters (briefly s.o.p.) is tightly closed. In fact, a Gorenstein local ring is weakly F-regular if and only if there exists a system of parameters ideal which is tightly closed [3]. But we do not know whether this fact is true or not if a ring is not Gorenstein, in particular, a ring is a Cohen Macaulay (briefly C-M) local ring. In this paper, we will prove this in the case of an 1-dimensional C-M local ring. For this, we study the F-rationality and the normality of the ring. And we will also prove that a C-M local ring is to be Gorenstein under some additional condition about the tight closure.

  • PDF

ERRATUM: “A FIXED POINT METHOD FOR PERTURBATION OF BIMULTIPLIERS AND JORDAN BIMULTIPLIERS IN C*-TERNARY ALGEBRAS” [J. MATH. PHYS. 51, 103508 (2010)]

  • YUN, SUNGSIK;GORDJI, MADJID ESHAGHI;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.237-246
    • /
    • 2016
  • Ebadian et al. proved the Hyers-Ulam stability of bimultipliers and Jordan bimultipliers in C*-ternary algebras by using the fixed point method. Under the conditions in the main theorems for bimultipliers, we can show that the related mappings must be zero. Moreover, there are some mathematical errors in the statements and the proofs of the results. In this paper, we correct the statements and the proofs of the results, and prove the corrected theorems by using the direct method.

Strong Higher Derivations on Ultraprime Banach Algebras

  • Lee, Young-Whan;Park, Kyoo-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper we show that if {$H_n$} is a continuous strong higher derivation of order n on an ultraprime Banach algebra with a constant c, then $c||H_1||^2{\leq}4||H_2||$ and for each $1{\leq}l$ < n $$c^2||H_1||\;||H_{n-l}{\leq}6||H_n||+\frac{3}{2}\sum_{\array{i+j+k=n\\i,j,k{\geq}1}}||H_i||\;||H_j||\;||H_k||+\frac{3}{2}\sum_{\array{i+k=n\\i{\neq}l,\;n-1}}||H_i||\;||H_k|| $$ and for a strong higher derivation {$H_n$} of order n on a prime ring A we also show that if [$H_n$(x),x]=0 for all $x{\in}A$ and for every $n{\geq}1$, then A is commutative or $H_n=0$ for every $n{\geq}1$.

  • PDF