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Abstract. Let B(H) be the algebra of all bounded linear operators on
a Hilbert space H with dim(H) > 2. Let GP(H) be the subset of B(H)

of all generalized projection operators. In this paper, we give a complete

characterization of surjective maps Φ : B(H) → B(H) satisfying A−λB ∈
GP(H) ⇔ Φ(A)− λΦ(B) ∈ GP(H) for any A,B ∈ B(H) and λ ∈ C.

1. Introduction and statement of the main result

One of the most fascinating areas of research in matrix theory and operator
theory is the study of preserver problems, which is closely related to quantum
mechanics. For many researchers, an essential approach to such a problem
is to reduce it to mappings that preserve properties, sets, or relations, with
their objective being to characterize these maps. The study of preserver prob-
lems dates back to Frobenius, who described the form of bijective linear maps
that preserve the determinant of matrices, see [10]. Since then, several results
have been established for linear preserver problems, see [5, 6, 13, 17, 18] and
the references therein. More recently, there has been growing interest among
mathematicians to explore preserver problems without assuming linearity as a
priori, see [7, 24].

J. Groß and G. Trenkler introduced a generalization of orthogonal projection
called a generalized projection. It is defined as a complex matrix A such that
A2 = A∗, see [12]. This concept was later extended for infinite-dimensional
Hilbert spaces by H-K. Du and Y. Li in [9], who characterized this type of
projection by its spectral decomposition. In [21], S. Radosavljevic and D.
Djordjevic investigated the conditions under which the product, difference, and
sum of these operators belong to the same class of operators. For more about
generalized projection and its connection to other subjects, see, for instance,
[1–4,11,14,22].
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Throughout this paper,H will denote a complex Hilbert space with dim(H)>
2 and B(H) stands for the algebra of all bounded linear operators acting on
H. For an operator A ∈ B(H), by A∗, σ(A), R(A) and N (A), we denote
the adjoint, spectrum, range and the kernel of A, respectively. An operator
A ∈ B(H) is called a generalized projection on H if A2 = A∗. The set of all
generalized projection operators on H is denoted by GP(H). Recall that, an
orthogonal projection operator (or simply projection) P is a bounded linear
operator satisfying P 2 = P ∗ = P . Note that P(H), the set of all orthogonal
projection operators on H, is a subset of GP(H). We adopt the notation x⊗ y
for an operator of rank at most one, defined by (x ⊗ y)z = ⟨z, y⟩x. It is well
known that a rank-one operator T is an orthogonal projection if and only if
T = x⊗ x for some unit vector x ∈ H. The set of all rank-one projections on
H is denoted by P1(H).

Recently, linear maps preserving generalized projections were studied in [6,
13]. More precisely, the authors determined the form of any surjective linear
map Φ : B(H) → B(H), where H is a separable complex Hilbert space, that
preserves the generalized projection operators.

In [7], Dolinar provides the complete form of surjective maps on B(H), that
satisfy the condition A − λB is idempotent if and only if Φ(A) − λΦ(B) is
idempotent for every A,B ∈ B(H) and λ ∈ C. Based on the above studies,
L. Yang and L. Zhang, in [24], have characterized the form of surjective maps
on B(H) such that A− λB is an involution if and only if Φ(A)− λΦ(B) is an
involution for any A,B ∈ B(H) and λ ∈ C. For more information, on preserving
orthogonal projections and some expositions on non-linear preserver problems,
the reader is referred to [15–17] and the references therein.

Motivated by the previous results, this paper aims to show that for a sur-
jective map Φ : B(H) → B(H) (not necessarily linear), the condition

(1)
A− λB ∈ GP(H)

⇔ Φ(A)− λΦ(B) ∈ GP(H) for all A,B ∈ B(H) andλ ∈ C,

is enough to characterize the map Φ.
This makes our result an extension of the main result of [6, 13] to the non-

linear case and without assuming that the map Φ to be continuous. The main
theorem is presented in the following.

Theorem 1.1. Let H be a complex Hilbert space with dim(H) > 2, and let
Φ : B(H) → B(H) be a surjective map. Then, the following assertions are
equivalent.

(1) Φ satisfies (1).
(2) There exists α ∈ C with α3 = 1, such that either

Φ(T ) = αUTU∗ for all T ∈ B(H),

where U : H → H is a unitary operator, or

Φ(T ) = αUT ∗U∗ for all T ∈ B(H),
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where U : H → H is an anti-unitary operator.

In order to prove Theorem 1.1 we need some preliminary results, which are
presented in the following section.

2. Preliminaries

Let us begin by the following properties of generalized projection operators
which are easily checked.

Lemma 2.1. Let A ∈ B(H).

(1) If A is an orthogonal projection operator, then A is a generalized pro-
jection operator.

(2) If A is a generalized projection operator, then A3 is an orthogonal pro-
jection operator.

(3) A is a rank-one generalized projection operator if and only if A = λx⊗x
for some unit vector x ∈ H and λ ∈ C such that λ3 = 1.

(4) For λ ∈ C such that λ3 = 1, we have A ∈ GP(H) ⇔ λA ∈ GP(H).

The following theorem is the main result of [9], where the authors gave a
spectral characterization of generalized projection operators that will be useful
to prove our main theorem.

Theorem 2.2. Let A ∈ B(H). Then A is a generalized projection operator if

and only if A is a normal operator and σ(A) ⊆ {0, 1, e±i 2
3π}. In this case, A

has the following spectral representation

(2) A = 0E(0)⊕ E(1)⊕ ei
2
3πE

(
ei

2
3π
)
⊕ e−i 23πE

(
e−i 23π

)
,

where E(α) denotes the spectral projection associated with a spectral point α ∈
σ(A) and E(α) = 0 if α /∈ σ(A).

Proof. See [9, Theorem 2]. □

As a consequence of the previous theorem (see [9, Theorem 6]), we obtain
that

A ∈ GP(H) ⇔ A is normal and A4 = A.

The result below, taken from [21], establishes the necessary and sufficient
conditions for the difference and sum of generalized projections to also be gen-
eralized projections.

Theorem 2.3. Let A,B ∈ GP(H) be two generalized projection operators.
Then

(1) A+B ∈ GP(H) if and only if AB = BA = 0.
(2) A−B ∈ GP(H) if and only if AB = BA = B∗.

Proof. See [21, Theorem 3.3 and 3.4]. □

The following lemma plays an important role in the proof of the main the-
orem.
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Lemma 2.4. If P is an orthogonal projection operator and Q is a generalized
projection operator such that 2P −Q ∈ GP(H), then Q = P .

Proof. Let P ∈ P(H) and Q ∈ GP(H) such that 2P −Q ∈ GP(H). Under the
direct sum decomposition H = R(P )⊕N (P ), we can suppose that

P =

[
I 0
0 0

]
and Q =

[
A B
C D

]
.

Since 2P −Q ∈ GP(H), then (2P −Q)2 = (2P −Q)∗, which proves that

P +Q∗ = PQ+QP.

Using matrix writing, we get I +A∗ = 2A, C = B∗ and D = 0. Thus

Q =

[
A B
B∗ 0

]
.

From Q ∈ GP(H), we obtain B = 0. Hence

Q =

[
A 0
0 0

]
.

Taking ∗ on I + A∗ = 2A and then subtracting it from the original equation
leads to A = A∗. By plugging A = A∗ to I + A∗ = 2A, we have A = I.
Therefore

Q =

[
I 0
0 0

]
.

This means Q = P . □

For two self-adjoint operators A,B ∈ B(H), we write A ≤ B if B − A is a
positive operator. In the case of orthogonal projections, we have the following
well known result.

Lemma 2.5. Let P,Q ∈ P(H) be two orthogonal projection operators. Then
the following assertions are equivalent.

(1) P ≤ Q.
(2) R(P ) ⊆ R(Q).
(3) PQ = QP = P .
(4) Q− P ∈ P(H).

Proof. See [19, Theorem 2.3.2]. □

The star partial order, which was defined by Drazin [8] as

A
∗
≤ B ⇔ A∗A = A∗B and AA∗ = BA∗,

where A,B ∈ B(H), can be characterized on the set of generalized projection
operators as follows.

Lemma 2.6. Let A,B ∈ GP(H) be two generalized projection operators. Then
the following assertions are equivalent.
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(1) A
∗
≤ B.

(2) B −A ∈ GP(H).

Proof. Let A,B ∈ GP(H). Then we have

A
∗
≤ B ⇔ A∗A = A∗B and AA∗ = BA∗

⇔ A3 = A2B and A3 = BA2

⇔ A3 = A2B = BA2

⇔ A5 = A4B = BA4
(
sinceA4 = A when A ∈ GP(H)

)
⇔ A2 = AB = BA

⇔ A∗ = AB = BA

⇔ B −A is a generalized projection operator. □

An immediate consequence of the two previous lemmas is

P
∗
≤ Q ⇔ P ≤ Q, for every P,Q ∈ P(H).

In the next lemma, we characterize the rank-one generalized projection op-
erators by the star order.

Lemma 2.7. Let A ∈ GP(H) be a nonzero generalized projection operator.
Then the following assertions are equivalent.

(1) A is a rank-one operator.

(2) ∀B ∈ GP(H), B
∗
≤ A =⇒ B = 0 or B = A.

Proof. (1) ⇒ (2) Suppose that A is a rank-one operator, by Lemma 2.1, A =
λa⊗ a for some unit vector a ∈ H and a scalar λ ∈ C such that λ3 = 1. Let B

be a nonzero generalized projection operator such that B
∗
≤ A. It follows, from

Lemma 2.6, that A−B is a generalized projection operator. By Theorem 2.3,
we get that B∗ = BA = AB. This implies that

B = λa⊗Ba = λB∗a⊗ a.

Hence B is a rank-one generalized projection operator. Then B = αa ⊗ a for
some scalar α ∈ C such that α3 = 1. Moreover B3 = B∗B = ABB = λα2a⊗ a
is a nonzero projection, so λα2 = 1, which (with α3 = 1) means α = λ.
Therefore B = A.

(2) ⇒ (1) Assume that the rank of A is at least 2. From Theorem 2.2, there
exists α ∈ σ(A) \ {0} such that E(α) is a nonzero spectral projection. Let
x be a unit vector in the range R(E(α)). From the equation (2), we obtain
Ax = αx. For B = αx ⊗ x, a simple calculation shows that B∗ = BA = AB.

This proves that B
∗
≤ A. Therefore A = B = αx⊗x. This contradiction shows

that A is a rank-one operator and finishes the proof. □
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In [23], Uhlhorn presents an important result that characterizes bijective
maps Φ : P1(H) → P1(H) which preserve orthogonality. This result can be
summarized as follows.

Lemma 2.8 (Uhlhorn’s theorem). Let H be a complex Hilbert space with
dim(H) ≥ 3. Let Φ : P1(H) → P1(H) be a bijective map satisfying the condi-
tion

PQ = 0 ⇔ Φ(P )Φ(Q) = 0 for all P,Q ∈ P1(H).

Then there exists an unitary or anti-unitary operator U : H → H such that
Φ(P ) = UPU∗ for every P ∈ P1(H).

3. Proof of the main theorem

Note that the sufficiency of Theorem 1.1 is clear. To prove the necessity, we
will first go through a few propositions. Let Φ : B(H) → B(H) be a surjective
map satisfying the condition (1).

Proposition 3.1. The following assertions hold.

(1) Φ is injective.
(2) Φ is homogeneous, i.e., Φ(λA) = λΦ(A) for every λ ∈ C and A ∈

B(H).
(3) Φ(P )∗ = Φ(P )Φ(I) = Φ(I)Φ(P ) for all orthogonal projection operator

P ∈ P(H).

Proof. (1) Let A,B ∈ B(H) such that Φ(A) = Φ(B). Then Φ(A) − Φ(B) =
Φ(B) − Φ(A) = 0 ∈ GP(H). By the condition (1), A − B ∈ GP(H) and
B − A ∈ GP(H). It follows that (A − B)∗ = (A − B)2 = (B − A)∗. Hence
A = B and Φ is injective. Thus, Φ is bijective since it is assumed to be
surjective, and moreover, Φ−1 satisfies the condition (1).

(2) Let A ∈ B(H) and λ ∈ C.
Case 1. λ ̸= 0 and λ3 ̸= −1. Set X = Φ(λA) − λΦ(A). Since (λA) − λA ∈

GP(H), then X ∈ GP(H). Similarly, we have A−
(
1

λ

)
(λA) ∈ GP(H). Thus

−1

λ
X = Φ(A)−

(
1

λ

)
Φ(λA) ∈ GP(H).

It follows that

− 1

λ
X =

(
− 1

λ
X

)4

=
1

λ4
X

and (
1

λ
+

1

λ4

)
X = 0.

Therefore X = 0 and Φ(λA) = λΦ(A).

Case 2. λ ∈ {−1,−ei
2
3π,−e−i 2

3π}. By case 1, we have Φ(λA) = 2Φ(
λ

2
A) =

λΦ(A).
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Case 3. λ = 0. We have Φ(0) = Φ(−0) = −Φ(0). Then Φ(0) = 0.
(3) Let P be an orthogonal projection operator. Then I − P is also an

orthogonal projection. Hence I − P ∈ GP(H). Thus Φ(I) − Φ(P ) ∈ GP(H).
Since Φ(I) and Φ(P ) are generalized projections, it follows, by Theorem 2.3,
that Φ(P )∗ = Φ(P )Φ(I) = Φ(I)Φ(P ). □

Proposition 3.2. Let A,B ∈ GP(H) be generalized projections. Then the
following assertions hold.

(1) AB = BA = 0 ⇔ Φ(A)Φ(B) = Φ(B)Φ(A) = 0.

(2) A
∗
≤ B ⇔ Φ(A)

∗
≤ Φ(B).

(3) If AB = BA = 0, then Φ(A+B) = Φ(A) + Φ(B).

Proof. (1) Follows from Theorem 2.3 and (1).
(2) Follows from Lemma 2.6 and (1).
(3) Let A,B ∈ GP(H) such that AB = BA = 0. By Theorem 2.3, we have

A + B ∈ GP(H). Thus Φ(A) + Φ(B) ∈ GP(H). Note that A
∗
≤ A + B and

B
∗
≤ A+B, which implies, by the second assertion, that

Φ(A)
∗
≤ Φ(A+B) and Φ(B)

∗
≤ Φ(A+B).

Using Theorem 2.3 and Lemma 2.6, we get

Φ(A+B)(Φ(A) + Φ(B)) = Φ(A+B)Φ(A) + Φ(A+B)Φ(B)

= Φ(A)Φ(A+B) + Φ(B)Φ(A+B)

= (Φ(A) + Φ(B))Φ(A+B)

= Φ(A)∗ +Φ(B)∗

= (Φ(A) + Φ(B))∗.

This shows that

Φ(A) + Φ(B)
∗
≤ Φ(A+B).

On the other hand, since Φ−1 satisfies the same assumptions as Φ, we have

Φ(A+B) = Φ
[
Φ−1(Φ(A)) + Φ−1(Φ(B))

]
∗
≤ Φ

[
Φ−1(Φ(A) + Φ(B))

]
∗
≤ Φ(A) + Φ(B).

Finally,

Φ(A+B) = Φ(A) + Φ(B). □

Proposition 3.3. The following statements hold.

(1) Φ preserves the set of rank-one generalized projections in both direc-
tions.

(2) Φ(I) = αI for some scalar α ∈ C for which α3 = 1.
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Proof. (1) Let A be a rank-one generalized projection. Using Lemma 2.7, we
get

∀B ∈ GP(H), B
∗
≤ A =⇒ B = 0 or B = A.

Since Φ preserves the start-order relation on the set of generalized projections,

∀S ∈ GP(H), S
∗
≤ Φ(A) =⇒ S = 0 or S = Φ(A).

Once again, Lemma 2.7 implies that Φ(A) is a rank-one generalized projection.
The converse holds since Φ and Φ−1 have the same properties.

(2) Set A = Φ(I), and let x ∈ H be a unit vector. Note that x ⊗ x is a
rank-one projection operator. It follows, by the first assertion, that there exist
a unit vector y ∈ H and λ ∈ C such that λ3 = 1 and Φ(y ⊗ y) = λx ⊗ x. By
the third assertion in Proposition 3.1, we get that

AΦ(y ⊗ y) = Φ(y ⊗ y)A = Φ(y ⊗ y)∗.

Hence, AΦ(y ⊗ y) = λAx ⊗ x is a nonzero generalized projection operator.
This implies that x and Ax are linearly dependent. Consequently, there exists
a nonzero scalar α ∈ C such that A = αI. Since A is a nonzero generalized
projection, then α3 = 1, as desired. □

Proposition 3.4. Let Φ(I) = I. Then the following statements hold.

(1) Φ preserves the set of orthogonal projection operators in both directions.
(2) Φ preserves the orthogonality between the projections in both directions.

PQ = QP = 0 ⇔ Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0.

(3) Φ preserves the order relation on the set of orthogonal projection oper-
ators in both directions.

Q ≤ P ⇔ Φ(Q) ≤ Φ(P ).

(4) For all orthogonal projection operators P,Q such that PQ = QP = 0
we have,

Φ(P +Q) = Φ(P ) + Φ(Q).

(5) Φ preserves rank-one projections in both directions.
(6) There exists a unitary or anti-unitary operator U : H → H such that

Φ(P ) = UPU∗ for all P ∈ P(H).

Proof. (1) Let P be an orthogonal projection operator. Then, I −P is also an
orthogonal projection. In particular, P, I − P ∈ GP(H). Therefore, Φ(P ), I −
Φ(P ) ∈ GP(H), which implies, by Theorem 2.3, that

Φ(P ) = Φ(P )∗.

Finally, Φ(P ) is an orthogonal projection operator. The converse is also true
because both Φ and Φ−1 possess the same properties.

(2) This assertion follows from the first assertion in Proposition 3.2.
(3) This assertion follows from the second assertion in Proposition 3.2.
(4) This assertion follows from the third assertion in Proposition 3.2.
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(5) This assertion follows from the fact that Φ preserves the set of rank-one
generalized projections in both directions and Φ (P(H)) = P(H).

(6) Note that Φ is a bijection on P1(H) that preserves orthogonality in both
directions. It follows from the Uhlhorn’s Theorem (Lemma 2.8) that there is a
unitary or anti-unitary operator U on H such that

Φ(P ) = UPU∗ for all P ∈ P1(H).

Since every finite rank projection is sum of pairwise orthogonal rank-one pro-
jections, then Φ(P ) = UPU∗ for every finite rank projection P .

Now, let P be an infinite rank projection. Then

UPU∗ = sup{Q : Q ≤ UPU∗, Q is a finite rank projection}.

Since Φ preserves the order of projections in both directions, we conclude that

Φ(P ) = sup{Q : Q ≤ Φ(P ), Q is a finite rank projection}
= sup{Q : Φ−1(Q) ≤ P, Q is a finite rank projection}
= sup{Q : Q ≤ UPU∗, Q is a finite rank projection}
= UPU∗.

Hence, Φ(P ) = UPU∗ holds for every projection P , as desired. □

Proof of Theorem 1.1. It remains to prove the necessity. From Proposition 3.3
and Proposition 3.4, we have found that there exists α ∈ C with α3 = 1 and a
unitary or anti-unitary operator U on H such that

Φ(P ) = αUPU∗ for all P ∈ P(H).

Case 1. If U is unitary, we will show that Φ(T ) = αUTU∗ for all T ∈ B(H).
To do that, define Ψ : B(H) → B(H) as Ψ(T ) = α−1U∗Φ(T )U . Note that Ψ is
a bijective homogeneous map that satisfies the condition (1) and

Ψ(P ) = P for all P ∈ P(H).

We claim that we have

Ψ(A) = A for all A ∈ GP(H).

Indeed, let A ∈ GP(H). Then by Theorem 2.2, we have

A =
⊕

λ∈σ(A)

λE(λ).

Using Proposition 3.2, we get that

Ψ(A) =
⊕

λ∈σ(A)

Ψ(λE(λ)) .

Since Ψ is homogeneous, then

Ψ(A) =
⊕

λ∈σ(A)

λΨ(E(λ)) .
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Note that E(α) is an orthogonal projection, so

Ψ(A) =
⊕

λ∈σ(A)

λE(λ) = A.

Now, let us prove, by induction, that for all positive integers n

(3) Ψ

(
A+

n∑
i=1

λiPi

)
= A+

n∑
i=1

λiPi

for every A ∈ GP(H), Pi ∈ P(H) and λi ∈ C.
For n = 1, let A ∈ GP(H), P1 ∈ P(H), and λ1 be a nonzero complex scalar.

Since λ−1
1 (A+ λ1P1)− λ−1

1 A = P1 ∈ GP(H), then

(4) Q = λ−1
1 Ψ(A+ λ1P1)− λ−1

1 Ψ(A) = λ−1
1 Ψ(A+ λ1P1)− λ−1

1 A ∈ GP(H).

Similarly, we have (A+ λ1P1)− λ1P1 = A ∈ GP(H). Then

D = Ψ(A+ λ1P1)− λ1Ψ(P1) = Ψ (A+ λ1P1)− λ1P1 ∈ GP(H).

This implies that λ−1
1 Ψ(A+ λ1P1)− λ−1

1 D ∈ GP(H). Therefore

(5) λ−1
1 (A+ λ1P1)− λ−1

1 D = λ−1
1 (2λ1P1 +A−Ψ(A+ λ1P1)) ∈ GP(H).

It follows from (4) and (5) that

2P1 −Q ∈ GP(H).

Using Lemma 2.4, we obtain that Q = P1. Thus Ψ(A+ λ1P1) = A+ λ1P1.
Now, assume that the formula (3) holds for some arbitrary positive integer

n. Let λ1, . . . , λn+1 be nonzero scalars in C, A ∈ GP(H) and P1, . . . , Pn+1 ∈
P(H). We have λ−1

1 (A+
∑n+1

i=1 λiPi)− λ−1
1 (A+

∑n+1
i=2 λiPi) ∈ GP(H), then

(6) Q′ = λ−1
1 Ψ

(
A+

n+1∑
i=1

λiPi

)
− λ−1

1 Ψ

(
A+

n+1∑
i=2

λiPi

)
∈ GP(H).

By the inductive hypothesis, we get that

Ψ

(
A+

n+1∑
i=2

λiPi

)
= A+

n+1∑
i=2

λiPi.

It follows from (6), that

(7) Ψ

(
A+

n+1∑
i=1

λiPi

)
= λ1Q

′ + (A+

n+1∑
i=2

λiPi).

Similarly, we have (A+
∑n+1

i=1 λiPi)− (
∑n+1

i=1 λiPi) ∈ GP(H). Then

D′ = Ψ

(
A+

n+1∑
i=1

λiPi

)
−Ψ

(
n+1∑
i=1

λiPi

)
∈ GP(H).



MAPS PRESERVING GENERALIZED PROJECTION OPERATORS 727

Once again, by the inductive hypothesis, we have Ψ(
∑n+1

i=1 λiPi) =
∑n+1

i=1 λiPi,
which implies that

(8) Ψ

(
A+

n+1∑
i=1

λiPi

)
= D′ +

n+1∑
i=1

λiPi.

Since

λ−1
1 Ψ

(
A+

n+1∑
i=1

λiPi

)
− λ−1

1

(
D′ +

n+1∑
i=2

λiPi

)
= P1 ∈ GP(H).

Then

(9) λ−1
1 (A−D′ + λ1P1) ∈ GP(H)

Combining (7), (8) and (9) we get that

2P1 −Q′ ∈ GP(H).

By Lemma 2.4, we obtain Q′ = P1. Finally

Ψ

(
A+

n+1∑
i=1

λiPi

)
= A+

n+1∑
i=1

λiPi.

To finish the proof for this case, note that, by [20, Corollary 2.3], every operator
T ∈ B(H) is a finite linear combination of orthogonal projection operators.
Then Ψ(T ) = T , which shows that

Φ(T ) = αUTU∗, (T ∈ B(H)).

Case 2. If U is anti-unitary, it is easy to see that the map

T →
(
ᾱ−1U∗Φ(T )U

)∗
satisfies the proprieties of Ψ in the case 1. Hence

(
ᾱ−1U∗Φ(T )U

)∗
= T for

every T ∈ B(H). Thus Φ(T ) = αUT ∗U∗ for every T ∈ B(H). The proof is
now complete. □

Let µ be a nonzero complex number, and let Γµ be the subset of B(H)
defined by

Γµ =
{
T ∈ B(H) : µ2T 2 = µ̄T ∗} .

It is evident that Γ1 = GP(H) and T ∈ Γµ if and only if µT ∈ GP(H).
The following corollary is a consequence of the main theorem and provides

a characterization of surjective maps satisfying

(10) A− λB ∈ Γµ ⇔ Φ(A)− λΦ(B) ∈ Γµ for all A,B ∈ B(H) and λ ∈ C.

Corollary 3.5. Let H be a complex Hilbert space with dim(H) > 2, and let
Φ : B(H) → B(H) be a surjective map. Then Φ satisfies (10) if and only if it
takes one of the two forms as described in Theorem 1.1.

Acknowledgement. We thank the reviewers for their valuable comments,
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