• Title/Summary/Keyword: Burn-in procedure

Search Result 54, Processing Time 0.019 seconds

Burn-in Models: Recent Issues, Developments and Future Topics

  • Cha, Ji-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.871-880
    • /
    • 2009
  • Recently, there has been much development on burn-in models in reliability area. Especially, the previous burn-in models have been extended to more general cases. For example, (i) burn-in procedures for repairable systems have been developed (ii) an extended assumption on the failure rate of the system has been proposed and (iii) a stochastic model for burn-in procedure in accelerated environment has been developed. In this paper, recent extensions and advances in burn-in models are introduced and some issues to be considered in the future study are discussed.

Optimal Burn-In under Warranty

  • Kim, Kuinam-J;Park, Chi-Yeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.135-143
    • /
    • 1999
  • This paper discusses an optimal burn-in procedure to minimize total costs based on the assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The procedure will consider warranty period as a factor of the total expected bum-in cost. A cost model is formulated to find the optimal burn-in time that minimizes the expected burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative example is included to show how to use the cost model in practice.

  • PDF

Optimal Burn-In under Waranty

  • Kim, Kui-Nam;Lee, Kwang-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.719-728
    • /
    • 1999
  • This paper discusses an optimal burn-in procedure to minimize total costs based on the assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The procedure will consider warranty period as a factor of the total expected burn-in cost. A cost model is formulated to find the optimal burn-in time that minimizes the expected burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative example is included to show how to use the cost model in prctice.

  • PDF

Optimal Burn-In for a Process with Weak Components

  • Kim, Kuinam J.;Boardman, Thomas J.
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.70-89
    • /
    • 1996
  • This paper discusses an optimal burn -in procedure to minimize total costs based on the assumption that some of the components are weak for stress and deteriorate faster than the main components. The procedure will define the costs of burn-in errors. An ideal burn-in consists of process in which all weak (substandard) components and no main (standard) components fail. In practice, the burn-in errors could occur for some reasons. For example, it is impossible to eliminate all weak components through burn-in, due to a nonzero proportion of defectives of the components. Probability model and cost function model are formulated to find the optimal burn-in time that minimizes the expected total cost. Several examples are included to show how to use the results.

  • PDF

Optimal Burn-In under Warranty

  • Kim, Kui-Nam J.;Park, Chi-Yeon;Hong, Chan-Geui
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.147-155
    • /
    • 1999
  • This paper discusses an optimal burn-in procedure to minimize total costs based on the assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The procedure will consider warranty period as a factor of the total expected burn-in cost. A cost model is formulated to find the optimal burn-in time that minimizes the expected burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative example is included to show how to use the cost model in practice.

  • PDF

Optimal Burn-in Time under Cumulative Pro-Rata Replacement Warranty

  • Yun, Won-Young;Lee, Yang-Woo;Chung, Il-Han;Luis Ferreira
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.241-251
    • /
    • 2001
  • In this paper, optimal bum-in time to minimize the total mean cost, which is the sum of manufacturing cost with burn-in and cumulative warranty-related cost, is obtained. When the products with cumulative pro-rata warranty have high failure rate in the early period (infant mortality period), a burn-in procedure is adopted to eliminate early product failures. After burn-in, the posterior product life distribution and the warranty-related cost are dependent on burn-in time; long burn-in period may reduce the warranty-related cost, but it increases the manufacturing cost. The paper provides a methodology to obtain total mean cost under burn-in and cumulative pro-rata warranty. Property of the optimal burn-in time is analyzed, and numerical examples and sensitivity analysis are studied.

  • PDF

Hardware Burn-in and Software Testing (하드웨어 번인과 소프트웨어 시험)

  • 유영관;이종무
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.77-81
    • /
    • 2001
  • Burn-in is a test procedure to find and eliminate the inherent initial failure of a product during or at the final stage of production process. Software testing is the validation and verification process which is used to cut off the faults from a software. The two have the common function and objective of "debugging". This article summarizes some significant models on the optimal hardware and software burn-in time, and provides the relevant paper lists. The need for the development of the unified burn-in policy of a hardware-software system is addressed.addressed.

  • PDF

A Bayesian Burn-in Procedure Guaranteeing Outgoing Quality of a Product (출검품질 보증을 위한 베이지안 번인시험방식 설계)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.4
    • /
    • pp.67-74
    • /
    • 2000
  • A Bayesian burn-in procedure is developed for imited failure populations in which defective items fail soon after they are put in operation and non-defective ones never fail during he technical life of the items. Sequential schemes guaranteeing pre-specified outgoing quality of a product are derived based on prior information on the quality of a product and accumulated failure information up to the decision point. A numerical example is also provided.

  • PDF

Optimal System Burn-in for Maximizing Reliability of Non-series Systems (비 직렬 시스템의 신뢰도 최적화를 위한 시스템 번인)

  • Kim, Kyungmee O.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.273-281
    • /
    • 2007
  • The decision of how long performing system burn-in must be answered with a probabilistic model of a system lifetime at which infant mortality failures created during assembly processes are quantified. In this paper, we propose such a model which is modified from previous results. Using the system model, we derived system reliability in terms of component and system burn-in times for the two cases of minimal repair at system failure and of component replacement and connection repair at their failure times. The procedure is illustrated with a bridge system and the optimal system burn-in times are obtained for maximizing system reliability. The result suggests that an assumption of minimal repair at system failure may underestimate the optimal burn-in time in practice.

A Study on Histological Recuperative Effect of Burn Remedies (화상치료제의 조직학적 수복효과)

  • Chi Gyoo Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.774-781
    • /
    • 2002
  • This study was carried out to test the recuperative effect of 2 types of sample drugs for 3 degree burn. The burn injury was made by iron plate heated in the boiling water. The Sprague Dawley rats were shaven with a razor preliminarily and burned by direct contact method for 10 seconds. The experimental groups were classified with 5 each-normal, control, MEBO ointment, sample A, sample B. The effect of the sample drugs were decided by histological results after 3 week application. The results were as following. The 3 treatment groups recovered the burn injury faster than control group. The recuperative effect precedes about 4-5 days at the time of 15th day and 1 week at the time of 3rd week. The therapeutical procedure of 3 treatment groups was similar with naked eye and with microscopic histology in the 1 st, 2nd and 3rd specimens. So there weren't significant differences in curative effect in 3 treatment groups of this experiment. But a regeneration of hair follicle was noted in Sample B uniquely. These results suggested that 3 burn remedies have similar effect of therpy, but sample B containing yolk sac oil has slightly better effect in part of hair regeneration.