• Title/Summary/Keyword: Buoyancy-Driven Flow

Search Result 37, Processing Time 0.024 seconds

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn C. H.;Ahn S. T.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.114-120
    • /
    • 1998
  • The present numerical study investigates flow characters and heat transfer enhancement by the viscoelastic-driven secondary flow and buoyancy effect in a 2:1 rectangular duct. Three versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is used. Calculated Nusselt numbers are very good agreement with experimental results for reported viscoelastic fluids. It is found that the heat transfer enhancement is mainly caused by the viscoelastic-driven secondary flow and buoyancy-induced secondary flow play a role of promoting this effect.

  • PDF

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

A Hybrid Turbulence Model for Prediction of Buoyancy-Driven Turbulent Thermal Convection Flow (부력에 의한 난류 열대류의 혼성 난류모델)

  • 김태규;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2069-2078
    • /
    • 1993
  • The buoyancy-driven turbulent thermal convection is predicted using an anisotropic hybrid turbulence model, which is incorporated with a low Reynolds k-.epsilon. turbulence model and an anisotropic buoyant part of algebraic stress model(ASM). The numerical predictions are compared with the Davidson's model,(1) the full ASM and the experimental results of Cheesewright et al.(2) All the models are shown to predict good agreements with the experiments for the averaged turbulence quantities. It is found that the effect of an anisotropic part on the Reynolds stress and the turbulent heat fluxes is substantial. In this study, the present hybrid model gives a fairly reasonable prediction in terms of the computational accuracy, convergence and stability. The contribution of an anisotropic buoyant part to turbulent heat fluxes are also scrutinized over the range of Rayleigh numbers $(4.79{\times}10^{10}{\le}Ra{\le}7.46{\times}10^{10}).$

COMPUTATIONS OF NATURAL CONVECTION FLOW WITHIN A SQUARE CAVITY BY HERMITE STREAM FUNCTION METHOD (Hermite 유동함수법에 의한 정사각형 공동 내부의 자연대류 유동계산)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.67-77
    • /
    • 2009
  • This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Study on the Improvement of the Convective Differencing Scheme for the High-Accuracy and Stable Resolution of the Numerical Solution (수치해의 정확성과 안정성이 보장되는 대류항 미분법 개선에 관한 연구)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1179-1194
    • /
    • 1992
  • QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes(QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For pure convection oblique step flow test problem, QUICKUP, SMARTER and SHARPER schemes remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Cavity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results.

A Study on the Flow Characteristics over the Rotating Susceptor in CVD Reactor (CVD 반응로 내부 회전 원판 주위의 유동 특성 연구)

  • Cha, Kwan;Kim, Youn-J.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.213-218
    • /
    • 2001
  • The characteristics of the fluid flow and mass transfer in a vertical atmospheric pressure chemical vapor deposition (APCVD) are numerically studied. In order to get the optimal process parameters for the uniformity of deposition on a substrate, Navier-Stokes and energy equations have been solved for the pressure, mass-flow rate and temperature distribution in a CVD reactor. Results show that the thermal boundary condition at the reactor wall has an important effect in the formation of buoyancy-driven secondary cell when radiation effect is considered. Results also show that reduction of the buoyancy effect on the heated reactor improves the uniformity of deposition.

  • PDF

Rotating Flows in a Circular Cylinder with Unstable Stratification (불안정 성층화를 가진 원통형 용기 내의 회전유동에 관한 연구)

  • Kim, Jae-Won
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Rotating flow of a stratified fluid contained in a circular cylinder with unstable temperature gradient imposed on the side wall of it has been numerically studied. The temperatures at the endwall disks are constant. The top disk of the container is coider than that of the bottob disk, as much as the temperature difference n${\Delta}$T, (0${\leq}$n${\leq}$3). Flows in the vessel are driven by an impulsive rotation of the hot bottom disk with respect to the central axis of the cylinder. Flow details have been acquired. For this flow, the principal balance in the interior core is characterized by a relationship between the radial temperature gradient and the vertical shear in the azimuthal velocity. As the buoyancy effect becomes appreciable, larger portions of the meridional fluid transport are long-circuit from the bottom disk to the interior region via the side wall.

  • PDF

The Buoyancy Effects in Horizontal Porous Layers with Vortical Through Flow (수직 투과 흐름이 있는 수평 다공질 유체층에서의 부력 효과)

  • Kim, Min-Chan;Kim, Sin;Yoon, Do-Young;Kim, Sae-Hoon
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.266-271
    • /
    • 2001
  • Buoyancy-driven natural convection is analysed by employing a linear stability theory in hori-zontal porous media with net through flow. Darcy's law is used to model the flow characteristics in porous media. Bated on the results of linear stability analysis, a heat transfer correlation was obtained by employing weakly nonlinear analysis. As the net through flow increases, the system becomes more stable and the effect of the Darcy-Rayleigh number on the Nusselt number decreases.

  • PDF