DOI QR코드

DOI QR Code

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe (Thermohydraulic Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency) ;
  • Yasuteru Sibamoto (Thermohydraulic Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency)
  • Received : 2022.08.04
  • Accepted : 2023.01.16
  • Published : 2023.05.25

Abstract

The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

Keywords

Acknowledgement

The construction of the CIGMA facility and the experiments in this work were conducted under the auspices of the Nuclear Regulation Authority, Japan. The authors acknowledge Mr. Mashiko, Mr. Miyo, Mr. Kobayashi, Mr. Ebisawa, and Mr. Massaki of the Nuclear Engineering Company Inc. (NECO), and Mr. Ohwada and Mr. Hangai of JAEA for performing the CIGMA experimental project. Mr. Ohmiya of KCS Corporation for postprocessing the experimental data. The CFD simulation was conducted using the supercomputer HPE SGI8600 in JAEA.

References

  1. S. Gupta, Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident, Nucl. Eng. Technol. 47 (1) (2015) 11-25, https://doi.org/10.1016/j.net.2015.01.002.
  2. S.-W. Hong, J. Kim J, H.-S. Kang, Y.-S. Na, J. Song, Research efforts for the resolution of hydrogen risk, Nucl. Eng. Technol. 47 (1) (2015) 33-46, https://doi.org/10.1016/j.net.2014.12.003.
  3. H. Liu, L. Tong, X. Cao, Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment, Nucl. Eng. Technol. 52 (8) (2020) 1650-1660, https://doi.org/10.1016/j.net.2020.01.030.
  4. S. Abe, M. Ishigaki, Y. Sibamoto, T. Yonomoto, RANS analyses on erosion behavior of density stratification consisted of helium-air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise (IBE-3), Nucl. Eng. Des. 289 (2015) 231-239, https://doi.org/10.1016/j.nucengdes.2015.04.002.
  5. S. Abe, E. Studer, M. Ishigaki, Y. Sibamoto, T. Yonomoto, Stratification breakup by a diffuse buoyant jet: the MISTRA HM1-1 and 1-1bis experiments and their CFD analysis, Nucl. Eng. Des. 331 (2018) 162-175, https://doi.org/10.1016/j.nucengdes.2018.01.050.
  6. S. Abe, E. Studer, M. Ishigaki, Y. Sibamoto, T. Yonomoto, Density stratification breakup by a vertical jet: experimental and numerical investigation on the effect of dynamic change of turbulent schmidt number, Nucl. Eng. Des. 368 (2020), 110785, https://doi.org/10.1016/j.nucengdes.2020.110785.
  7. R. Zboray, G. Mignot, R. Kapulla, D. Paladino, Erosion and break-up of light-gas layers by a horizontal jet in a multi-vessel, large-scale containment test system, Nucl. Eng. Des. 291 (2015) 10-18, https://doi.org/10.1016/j.nucengdes.2015.05.006.
  8. OECD/NEA Committee on the Safety of Nuclear Installations, OECD/SETH-2 Project PANDA and MISTRA Experiments Final Summary Report-Investigation of Key Issues for the Simulation of Thermal-Hydraulic Conditions in Water Reactor Containments, vol. 5, NEA/CSNI/R, 2012, p. 2012.
  9. D. Paladino, G. Mignot, R. Kapulla, S. Paranjape, M. Andreani, E. Studer, J. Brinster, F. Dabbene, OECD/NEA HYMERES project: for the analysis and mitigation of a severe accident leading to hydrogen release into a nuclear plant containment, in: Proceedings of ICAPP 2014, 2014. Charlotte, USA.
  10. B.-U. Bae, Jae B. Lee, Y.-S. Park, J. Kim, K.-H. Kang, Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility, Nucl. Eng. Technol. 53 (8) (2021) 2477-2487, https://doi.org/10.1016/j.net.2021.02.020.
  11. S. Abe, A. Hamdani, M. Ishigaki, Y. Sibamoto, Experimental investigation of natural convection and gas mixing behaviors driven by outer surface cooling with and without density stratification consisting of an air-helium gas mixture in a large-scale enclosed vessel, Ann. Nucl. Energy 166 (2022), 108791, https://doi.org/10.1016/j.anucene.2021.108791.
  12. F.S. Sarikurt, Y.A. Hassan, Large eddy simulations of erosion of a stratified layer by a buoyant jet, Int. J. Heat Mass Tran. 112 (2017) 354-365, https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.134.
  13. M. Andreani, A. Badillo, R. Kapulla, Synthesis of the OECD/NEA-PSI CFD benchmark exercise, Nucl. Eng. Des. 299 (2016) 59-80, https://doi.org/10.1016/j.nucengdes.2015.12.029.
  14. E. Studer, J.P. Magnaud, F. Dabbene, I. Tkatschenko, International standard problem on containment thermal-hydraulics ISP47, Nucl. Eng. Des. 237 (5) (2007) 536-551, https://doi.org/10.1016/j.nucengdes.2006.08.008.
  15. D. Paladino, J. Dreier, Panda, A multipurpose integral test facility for LWR safety investigations, Sci. Technol. Nuclear Installations (2012), https://doi.org/10.1155/2012/239319, 2012) Article ID 239319, 9 pages.
  16. H.B. Fischer, E.J. List, R.C.Y. Koh, J. Imberger, N.H. Brooks, Mixing in Inland and Coastal Waters, Academic Press, London, 1979.
  17. R. Kumar, A. Dewan, Partially-averaged Navier-Stokes method for turbulent thermal plume, Heat Mass Tran. 51 (12) (2015) 1655-1667, https://doi.org/10.1007/s00231-015-1527-1.
  18. G.H. Jirka, Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: single round jet, Environ. Fluid Mech. 4 (1) (2004) 1-56, https://doi.org/10.1023/A:1025583110842.
  19. S.N. Michas, P.N. Papanicolaou, Horizontal round heated jets into calm uniform ambient, Desalination 248 (1-3) (2009) 803-815, https://doi.org/10.1016/j.desal.2008.12.042.
  20. E. Studer, J. Brinster, I. Tkatschenko, G. Mignot, D. Paladino, M. Andreani, Interaction of a light gas stratified layer with an air jet coming from below: large scale experiments and scaling issues, Nucl. Eng. Des. 253 (2012) 406-412, https://doi.org/10.1016/j.nucengdes.2012.10.009.
  21. The OpenFOAM foundation. https://openfoam.org/version/8/.
  22. F. Nicoud, F. Ducros, Subgrid-scale stress modeling based on the square of the velocity gradient trensor. Flow. Flow, Turbulence and Combustion 62 (3) (1999) 183-200, https://doi.org/10.1023/A:1009995426001.
  23. J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weather Rev. 91 (3) (1963) 99-164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  24. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (3) (1983) 357-393, https://doi.org/10.1016/0021-9991(83)90136-5.
  25. L.N. Fan, Turbulent Buoyant Jets into Stratified or Flowing Ambient Fluids, Report No. KH-R-15, W.M. Keck Laboratory of Hydrology and Water Resources, California Institute of Technology, Pasadena, CA, 1967.
  26. J. Hansen, H. Schroder, Horizontal jet dilution studies by use of radioactive isotopes, acta polytecnica scandinavia, in: Civil Engineering and Building Construction Series No. 49, 1968. Copenhagen.
  27. H.O. Anwar, Measurements on horizontal buoyant jet in calm ambient fluid, with theory based on variable coefficient of entrainment determined experimentally, La Houille Blanche 58 (4) (1972) 311-319, https://doi.org/10.1051/lhb/1972024.
  28. M.J. Davidson, K.L. Pun, Weakly advected jets in cross-flow, J. Hydraul. Eng. 125 (1) (1999) 47-58, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(47).