• Title/Summary/Keyword: Bulk-micromachining

Search Result 84, Processing Time 0.037 seconds

Semiconductor Flow Sensor To Detect Air flow (유속감지를 위한 반도체 유량센서)

  • Yee, young-Joo;Chun, Kuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.188-191
    • /
    • 1993
  • Silicon flow sensor which can detect the magnitude and direction of two dimensional air flow was designed and fabricated by CMOS process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm a heater at the center of the diaphragm and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity due to excellent thermal isolation property of dielectric materials and its tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the given structure. Measured sensitivity of our sensor is $18.7mV/(m/s)^{1/2}$.

  • PDF

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

The Vertical Trench Hall-Effect Device Using SOI Wafer (SOI Wafer를 사용한 트렌치 구조의 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2023-2025
    • /
    • 2002
  • We have fabricated a novel vertical trench-Hall device sensitive to the magnetic field parallel to the sensor chip surface. The vertical trench-Hall device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 350 V/AT is measured.

  • PDF

Application of Bio-MEMS Technology on Medicine and Biology (Bio-MEMS : MEMS 기술의 의료 및 생물학 응용)

  • Jang, Jun-Geun;Jung, Seok;Han, Dong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.45-51
    • /
    • 2000
  • 지난 세기부터 MEMS 제작 기술을 이용하여 만들어진 시스템들을 의학이나 생물학적인 용도로 응용하기 위한 많은 연구가 활발히 이루어져 왔다. 기술적인 측면에서 이러한 연구들은 MEMS 분야의 초창기에 강조되어 온 표면 및 몸체 미세 가공 기술(surface & bulk micromachining)과 같은 미세 구조물 제작 기술의 발전에 힘입은 바 크다. 그러나 MEMS 기술이 점차 발전되어 오면서, 가공 기술이 고도화되고 미세 시스템의 구조가 점차 복잡해짐에 따라, 많은 연구들이 단순한 가공기술을 넘어 미세 시스템을 조립하고 집적화할 수 있는 기술, 접합 (bonding) 기술, 패키징 (packaging) 기술, 3차원 형상의 제작 기술, 실리콘(silicon)이나 유리(glass)가 아닌 다른 재료를 이용한 미세 가공 기술 등의 개발을 중심으로 이루어지고 있다.(중략)

  • PDF

Characteristics of polycrystalline 3C-SiC micro pressure sensors for high temperature applications (초고온용 다결정 3C-SiC 마이크로 압력센서의 특성)

  • Thien, Duong Xuan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.387-388
    • /
    • 2008
  • High temperature micro pressure sensors were fabricated by polycrystalline (poly) 3C-SiC piezoresistors formed by oxidized SOI substrates with APCVD. These have been designed by bulk micromachining below $1{\times}1mm^2$ diaphragm and Si membrane $20{\mu}m$ thick. The pressure sensitivity of fabricated pressure sensor was 0.1 mV/Vbar. The non-linearity of sensor was ${\pm}0.44%$ FS and the hysteresis was 0.61% FS.TCS of pressure sensor was -1867 ppm/$^{\circ}C$, its TCR was -792 ppm/$^{\circ}C$, and TCGF to 5 bar was -1042 ppm/$^{\circ}C$ from 25 to $400^{\circ}C$.

  • PDF

A CMOS Compatible Micromachined Microwave Power Sensor (CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

Characteristic Analysis of The Vertical Trench Hall Sensor using SOI Structure (SOI 구조를 이용한 수직 Hall 센서에 대한 특성 연구)

  • 이지연;박병휘
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2002
  • We have fabricated a vertical trench Hall device which is sensitive to the magnetic field parallel to the sensor surface. The vertical trench Hall device has been built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 150 V/AT has been measured.

  • PDF

THe Novel Silicon MEMS Package for MMICS (초고추파 집적 회로를 위한 새로운 실리콘 MEMS 패키지)

  • Gwon, Yeong-Su;Lee, Hae-Yeong;Park, Jae-Yeong;Kim, Seong-A
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.271-277
    • /
    • 2002
  • In this paper, a MEMS silicon package is newly designed, fabricated for HMIC, and characterized for microwave and millimeter-wave device applications. The proposed package is fabricated by using two high resistivity silicon substrates and surface/bulk micromachining technology. It has a good performance characteristic such as -20㏈ of $S_11$/ and -0.3㏈ of $S_21$ up to 20㎓, which is useful in microwave region. It has also better heat transfer characteristics than the commonly used ceramic package. Since the proposed silicon MEMS package is easy to fabricate and wafer level chip scale packaging is also possible, the production cost can be much lower than the ceramic package. Since it will be a promising low-cost package for mobile/wireless applications.

The controllable damper for micro vibration suppression (미세 진동 흡수를 위한 가변형 댐퍼)

  • Kim, Ki-Duck;Sim, Won-Chul;Jeon, Do-Young;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3289-3291
    • /
    • 1999
  • The vibration and impact hinders the movement of micro dynamic system. The controllable micro damper is a solution for this problem. In this paper, the controllable micro damper for MR(Magneto - Rheological) Fluid is designed and fabricated using bulk micromachining process and organic bonding technique. The damping constant of micro MR damper changes according to input magnetic field. The response of the micro MR damper is measured and the experimental results are compared.

  • PDF

Lour Voltage Operated RFMEMS Switch for Advanced Mobile System Applications (차세대 이동통신시스템에 적용을 위한 저전압구동의 RFMEMS 스위치)

  • Seo, Hye-K.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2395-2397
    • /
    • 2005
  • A low voltage operated piezoelectric RF MEMS in-line switch has been realized by using silicon bulk micromachining technologies for advanced mobile/wireless applications. The developed RF MEMS in-line switches were comprised of four piezoelectric cantilever actuators with an Au contact metal electrode and a suspended Au signal transmission line above the silicon substrate. The measured operation dc bias voltages were ranged from 2.5 to 4 volts by varying the thickness and the length of the piezoelectric cantilever actuators, which are well agreed with the simulation results. The measured isolation and insertion loss of the switch with series configuration were -43dB and -0.21dB (including parasitic effects of the silicon substrate) at a frequency of 2GHz and an actuation voltage of 3 volts.

  • PDF