• 제목/요약/키워드: Bulk-micromachining

검색결과 84건 처리시간 0.032초

표면 마이크로머시닝을 이용한 압전 박막 공진기 제작 (Film Bulk Acoustic Wave Resonator using surface micromachining)

  • 김인태;박은권;이시형;이수현;이윤희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

벌크 마이크로머시닝 기술을 이용한 박형 광픽업용 SiOB 제작 (The Fabrication of SiOB by using Bulk Micromachining Process for the Application of Slim Pickup)

  • 최석문;박성준;황웅린
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.175-181
    • /
    • 2005
  • SiOB is an essential part of slim optical pickup, where the silicon mirror, LD stand, silicon PD are integrated and LD is flip chip bonded. SiOB is fabricated with bulk micromachining. Especially the fabrication of silicon wafer with stepped concave areas has many extraordinary difficulties. As a matter of fact, experiences and knowledges are rare in the fabrication of the highly stepped silicon wafer. The difficulties occurring in the integration of PD and SiOB, and highly stepped patterning, and silicon mirror roughness and how-to-solve will be discussed.

  • PDF

MEMS 기반의 IR $CO_2$ 센서 제작 및 특성 평가 (A Fabrication of IR $CO_2$ Sensor based on the MEMS and Characteristic Evaluation)

  • 김신근;한용희;문성욱
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권5호
    • /
    • pp.232-237
    • /
    • 2005
  • In this paper, we fabricated $CO_2$ gas sensor based on the MEMS infrared sensor and characterized its electrical and $CO_2$-sensing properties. The fabricated $CO_2$ gas sensor by MEMS technique has many advanges over NDIR(nondispersive) $CO_2$ sensor such as monolithic fabrication, very high selectivity on $CO_2$, low power consumption and compact system. Microbolometer by surface micromachining was fabricated for gas detector and $CO_2$ filter chip by bulk micromachining was fabricated for signal referencing. By using the proposed and fabricated gas sensor, we are expected to measure $CO_2$ concentration more accurately with high reliability.

마이크로머시닝 기술을 이용한 초소형 자이로센서의 연구동향 (Miniaturized gyroscopes using micromachining technology)

  • 한승오;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1971-1973
    • /
    • 1996
  • In this paper various types of gyroscope fabricated by micromachining technologies were reviewed. Four common types of gyroscope reported in the past few years are beam, tuning fork, gimbal, and vibrating shell structure made by surface micromachining using sacrificial layer, bulk micromachining using RIE, or electroplating method. In the study of these new gyroscopes, the fabrication methods, advantages and disadvantages of each structure were examined as well as the direction of development in the future.

  • PDF

실리콘 마이크로머시닝 기술과 산업용 MEMS (Silicon Micromachining Technology and Industrial MEMS Applications)

  • 조영호
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.52-58
    • /
    • 2000
  • 최근 첨단 미세가공기술로 주목을 받고 있는 실리콘 마이크로머시닝 기술과 이를 기반으로 한 산업용 MEMS 개발현황을 소개한다. 전반부에서는 마이크로머시닝 기술의 종류를 소개하고 각각의 기술에 대해 기술근원, 미세가공원리와 기본 가공공정을 간략히 요약한 후 기전 집적형태의 마이크로머신과의 연계성을 고려한 시스템적인 측면에서의 기술특성을 상호 비교한다. 또한 가공의 양산성, 재현성, 조립성 측면에서 마이크로머시닝의 가공성을 조명함과 동시에 향후 발전방향을 전망한다.(중략)

  • PDF

수평구동형 정전 액추에이터를 이용한 금속형 공진가속도계의 설계, 제작, 정적시험 및 오차분석 (Design, Fabrication, Static Test and Uncertainty Analysis of a Resonant Microaccelerometer Using Laterally-driven Electrostatic Microactuator)

  • 서영호;조영호
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.520-528
    • /
    • 2001
  • This paper investigates a resonant microaccelerometer that measures acceleration using a built-in micromechanical resonator, whose resonant frequency is changed by the acceleration-induced axial force. A set of design equations for the resonant microaccelerometer has been developed, including analytic formulae for resonant frequency, sensitivity, nonlinearity and maximum stress. On this basis, the sizes of the accelerometer are designed for the sensitivity of 10$^3$Hz/g in the detection range of 5g, while satisfying the conditions for the maximum nonlinearity of 5%, the minimum shock endurance of 100g and the size constraints placed by microfabrication process. A set of the resonant accelerometers has been fabricated by the combined use of bulk-micromachining and surface-micromachining techniques. From a static test of the cantilever beam resonant accelerometer, a frequency shift of 860Hz has been measured for the proof-mass deflection of 4.3${\pm}$0.5$\mu\textrm{m}$; thereby resulting in the detection sensitivity of 1.10${\times}$10$^3$Hz/g. Uncertainty analysis of the resonant frequency output has been performed to identify important issues involved in the design, fabrication and testing of the resonant accelerometer.

SDB와 전기화학적 식각정지에 의한 벌크 마이크로머신용 3차원 미세구조물 제작 (Fabrication of 3-Dimensional Microstructures for Bulk Micromachining by SDB and Electrochemical Etch-Stop)

  • 정귀상;김재민;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.958-962
    • /
    • 2002
  • This paper reports on the fabrication of free-standing microstructures by DRIE (deep reactive ion etching). SOI (Si-on-insulator) structures with buried cavities are fabricated by SDB (Si-wafer direct bonding) technology and electrochemical etch-stop. The cavity was formed the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the formed cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing (100$0^{\circ}C$, 60 min.), the SDB SOI structure with a accurate thickness and a good roughness was thinned by electrochemical etch-stop in TMAH solution. Finally, it was fabricated free-standing microstructures by DRIE. This result indicates that the fabrication technology of free-standing microstructures by combination SDB, electrochemical etch-stop and DRIE provides a powerful and versatile alternative process for high-performance bulk micromachining in MEMS fields.

UV-LIGA 표면 미세 가공 기술과 (110) 실리콘 몸체 미세 가공 기술을 이용한 큰 종횡비의 빗모양 구동기 제작에 관한 연구 (A HIGH-ASPECT-RADIO COME ACTUATOR USING UV-LIGA SURFACE MICROMACHINING AND (110) SILICON BULK MICORMACHINING)

  • 김성혁;이상훈;김용권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권2호
    • /
    • pp.132-139
    • /
    • 2000
  • This paper reports a novel micromachining process based on UV-LIGA process and (110) silicon anisotropic etching for fabrication of a high-aspect-ratio comb actuator. The comb electrodes are fabricated by (110) SILICON comb structure considering the etch-rate-ratio between (110) and (111) planes and lateral etch rate of a beam-type structure. The fabricated structure was$ 400\mum \; thick\; and\; 18\mum$ wide comb electrodes separated by $7\mim$ so that the height-gap ratio was about 57. Also considering resonant frequency of the comb actuator and the frequency-matching between sensing and driving mode for gyroscope application, we designed the number, width, height and length of the spring structures. Electroplated gold springs on both sides of the seismic mass were $15\mum\; wide,\; 14\mum\; thick\; and \; 500\mum$ long. The fabricated comb actuator had resonant frequency ay 1430Hz, which was calculated to be 1441Hz. The proposed fabrication process can be applicable to the fabrication of a high-aspect-ratio comb actuator for a large displacement actuator and precision sensors. Moreover, this combined process enables to fabricate a more complex structure which cannot be fabricate only by surface or bulk micromachining.

  • PDF

실리콘 마이크로머시닝을 이용한 광섬유 간섭계형 가속도 센서 (Fiber-optic interferometric accelerometer using silicon micromachining.)

  • 권혁춘;김응수;김경찬;강신원
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.322-323
    • /
    • 2003
  • Silicon substrate was fabricated by bulk silicon micromachining and it's structure is based on a proof mass suspended by two beam. To monitor the acceleration, dynamic excitation of accelerometer was performed using a shaker. The attached FFPI and suspension beam are bent because support beam move with variation of the proof mass. Thus phase difference detected by the acceleration change. So we can know that resonance frequency of fabricated accelerometer is about 557 Hz and dynamic range was measured from 0 g to 2 g.

  • PDF

마이크로머시닝 기술을 이용한 전자 광학 렌즈의 제작 (Fabrication of Electro-optical Microlens Using Micromachining Technology)

  • 이용재;전국전
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.413-415
    • /
    • 1996
  • This paper presents a technique for fabricating an electro-optical microlens for microcolumn e-beam system. The device, named Self-Aligned Microlens (SAM) was realized by mixing surface and bulk micromachining technology. The microbridges were formed on both sides of silicon wafer symmetrically. The alignment error between the electrodes could be controlled within a few micrometers with also reducing the numbers of anodic bonding.

  • PDF