• 제목/요약/키워드: Bulk metallic glass composite

검색결과 22건 처리시간 0.032초

기계적 밀링 및 방전 플라즈마 소결 공정을 이용한 벌크 비정질 복합재의 제조 (Fabrication of Bulk Metallic Glass Composites by Mechanical Milling with Subsequent Spark Plasma Sintering Process)

  • 이진규;김택수;김정곤
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.197-201
    • /
    • 2007
  • Bulk metallic glass (BMG) composite was fabricated by consolidation of milled metallic glass composite powders. The metallic glass composite powder was synthesized by a controlled milling process using the Cu-based metallic glass powder blended with 30 vol% Zr-based metallic glass powders. The milled composite powders showed a layered structure with three metallic phases, which is formed as a result of mechanical milling. By spark plasma sintering of milled metallic glass powders in the supercooled liquid region, a fully dense BMG composite was successfully synthesized.

Ni계 벌크 비정질 복합재의 제조 (Synthesis of Ni-based Bulk Metallic Glass Composites)

  • 이진규
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.297-301
    • /
    • 2008
  • The Ni-based bulk metallic glass matrix composites were fabricated by spark plasma sintering of mixture of gas-atomized metallic glass powders and ductile brass powders. The successful consolidation of metallic glass matrix composite was achieved by strong bonding between metallic glass powders due to viscous flow deformation and lower stress of ductile brass powders in the supercooled liquid state during spark plasma sintering. The composite shows some macroscopic plasticity after yielding, which was obtained by introducing a ductile second brass phase in the Ni-based metallic glass matrix.

Cu기 벌크 비정질 복합체의 성형 및 특성 (Consolidation and Characterization of Cu-based Bulk Metallic Glass Composites)

  • 이진규;김택수
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.399-404
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composite was fabricated by spark plasma sintering (SPS) using of gas-atomized metallic glass powders and ductile brass powders. No defect such as pores and cavities was observed at the interface between the brass powder and the metallic glass matrix, suggesting that the SPS process caused a severe viscous flow of the metallic glass and brass phases in the supercooled liquid region, resulting in a full densification. The BMG composites shows some macroscopic plasticity after yielding, although the levels of strength decreased.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조 (Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering)

  • 이진규
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

방전플라즈마소결을 이용한 Ni계 비정질 복합재의 제조 (Synthesis of Ni-based Metallic Glass Composite Fabricated by Spark Plasma Sintering)

  • 김송이;금보경;이민하;김범성
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.33-36
    • /
    • 2013
  • A bulk metallic glass-forming alloy, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.