DOI QR코드

DOI QR Code

Synthesis of Ni-based Metallic Glass Composite Fabricated by Spark Plasma Sintering

방전플라즈마소결을 이용한 Ni계 비정질 복합재의 제조

  • 김송이 (한국생산기술연구원 희소금속연구그룹) ;
  • 금보경 (한국생산기술연구원 희소금속연구그룹) ;
  • 이민하 (한국생산기술연구원 희소금속연구그룹) ;
  • 김범성 (한국생산기술연구원 희소금속연구그룹)
  • Received : 2013.01.17
  • Accepted : 2013.02.21
  • Published : 2013.02.28

Abstract

A bulk metallic glass-forming alloy, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.

Keywords

References

  1. A. L. Greer: Science, 267 (1995) 1947. https://doi.org/10.1126/science.267.5206.1947
  2. P. E. Donovan: Acta Mater., 37 (1989) 445. https://doi.org/10.1016/0001-6160(89)90228-9
  3. H. Kimura, T. Masumoto: Amorphous Metallic Alloys, F. E. Luborsky (Ed.), Butterworths, London (1983) 187.
  4. W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. R, 44 (2004) 45. https://doi.org/10.1016/j.mser.2004.03.001
  5. A. Inoue: Mater Sci. Eng. A, 304-306 (2001) 1. https://doi.org/10.1016/S0921-5093(00)01551-3
  6. M. W. Chen: Annu. Rev. Mater. Res., 38 (2008) 445. https://doi.org/10.1146/annurev.matsci.38.060407.130226
  7. C. A. Schuh, T. C. Hufnagel and U. Ramamurty: Acta Mater., 55 (2007) 4067. https://doi.org/10.1016/j.actamat.2007.01.052
  8. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou and W. L. Johnson: Nature., 451 (2008) 1085. https://doi.org/10.1038/nature06598
  9. H. Choi-Yim, R. D. Conner, F. Szuecs and W. L. Johnson: Acta Mater., 50 (2002) 2737. https://doi.org/10.1016/S1359-6454(02)00113-1
  10. T. S. Kim, J. K. Lee, W. J. Kim and J. C. Bae: J. Kor. Powd. Met. Inst., 12 (2005) 406. https://doi.org/10.4150/KPMI.2005.12.6.406
  11. J. Eckert, J. Das, S. Pauly and C. Duhamel: J. Mater. Res., 22 (2007) 285. https://doi.org/10.1557/jmr.2007.0050
  12. C. C Hays, C. P Kim and W. L Johnson: Phys. Rev. Lett., 84 (2000) 2901. https://doi.org/10.1103/PhysRevLett.84.2901
  13. M. H. Lee, D. H. Bae, W. T. Kim, D. H. Kim, E. Rozhkova, P. B. Wheelock and D. J. Sordelet: J. Non-Cryst. Solids., 315 (2003) 89. https://doi.org/10.1016/S0022-3093(02)01424-2
  14. D. H. Bae, M. H. Lee, S. Yi, D. H. Kim and D. J. Sordelet: J. Non-Cryst. Solids., 337 (2004) 15. https://doi.org/10.1016/j.jnoncrysol.2004.03.107
  15. Y. Leng and T. H. Courtney: J. Mater. Sci., 24 (1989) 2006. https://doi.org/10.1007/BF02385414
  16. J. Y. Kim, S. Scudino, U. Kuhn, B. S. Kim, M. H. Lee and J. Eckert: Metals., 2 (2012) 79. https://doi.org/10.3390/met2020079

Cited by

  1. Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation vol.20, pp.4, 2013, https://doi.org/10.4150/KPMI.2013.20.4.285