• Title/Summary/Keyword: Bulk Reaction

Search Result 323, Processing Time 0.022 seconds

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Effects of Synthesis Conditions on Luminescence Characteristics of Glutathione Capped ZnSe Nano particles (글루타티온이 캡핑된 ZnSe 나노 입자 발광 특성에 미치는 합성 조건의 영향)

  • Back, Geum Ji;Song, Ha Yeon;Lee, Min Seo;Hong, Hyun Seon
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2021
  • Zinc selenide (ZnSe) nanoparticles were synthesized in aqueous solution using glutathione (GSH) as a ligand. The influence of the ligand content, reaction temperature, and hydroxyl ion concentration (pH) on the fabrication of the ZnSe particles was investigated. The optical properties of the synthesized ZnSe particles were characterized using various analytical techniques. The nanoparticles absorbed UV-vis light in the range of 350-400 nm, which is shorter than the absorption wavelength of bulk ZnSe particles (460 nm). The lowest ligand concentration for achieving good light absorption and emission properties was 0.6 mmol. The reaction temperature had an impact on the emission properties; photoluminescence spectroscopic analysis showed that the photo-discharge characteristics were greatly enhanced at high temperatures. These discharge characteristics were also affected by the hydroxyl ion concentration in solution; at pH 13, sound emission characteristics were observed, even at a low temperature of 25℃. The manufactured nanoparticles showed excellent light absorption and emission properties, suggesting the possibility of fabricating ZnSe QDs in aqueous solutions at low temperatures.

The High temperature stability limit of talc, $Mg_3Si_4O_{10}(OH)_2$ (활석 $Mg_3Si_4O_{10}(OH)_2$의 고온 안정영역에 관한 실험적 연구)

  • 조동수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.123-132
    • /
    • 1997
  • In the system $MgO-SiO_2-H_2O$, Talc[$Mg_3Si_4O_{10}(OH)_2$] has been synthesized hydrothermally at 200 MPa, $600^{\circ}C$ from the oxide mixture of the bulk composition of talc. The oxide mixture of the bulk composition of anthophyllite$[Mg_7Si_8O_{22}(OH)2]$ converted to talc, enstatite $(MgSiO_3)$, quartz at 200 MPa, $750^{\circ}C$ with excess of $H_2O$. In low to medium pressure metramorphism, enstatite-talc assemblage is metastable relative to anthophyllite with the reaction talc + 4 enstatite=anthophyllite (Greenwood, 1963). The high temperature stability of talc is bounded with the dehydration reaction to anthophyllite rather than that to enstatite(Greenwood, 1963; Chernosky et al., 1985). Therefore our experiment result assemblage, enstatite-talc-quatz at 200 MPa, $750^{\circ}C$ from oxide mixture of bulk compostion of anthophyllite is metastable assemblage. The hydrothermal experiment performed at 41 to 243 MPa, 680 to $760^{\circ}C$ with the starting material composed of synthetic talc, enstatite and quartz. Talc or enstatite grows during the runs and no extra phases including anthophyllite nucleated. Based on the increase or decrease of the each phase from run products, one of the possible reactions is talc=3 enstatite+quartz+H_2O$. The reversal bracket of the reaction is 699 to $700^{\circ}C$ at 100 MPa. Talc is stable up to $740^{\circ}C$ at 200 MPa and enstatite grow at $680^{\circ}C$, 40 MPa and at $760^{\circ}C$, 250 MPa. Though the high temperature limit of talc around 200 MPa is bounded thermodynamically by the reaction, 7 talc=3 anthophyllite+4 quartz+4 H_2O$, talc persisted throughout the previous reaction up to the reaction, talc=3 enstatite+quartz+$H_2O$.

  • PDF

Preparation of $Fe_{3-x}Mn_{x}O_4$ Films by the Ferrite Plating and its Magnetic Properties (Ferrite plating 방법에 의한 $Fe_{3-x}Mn_{x}O_4$ 박막 제작과 자기적 성질)

  • 하태욱;이정식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.145-150
    • /
    • 1996
  • The magnetic thin films can be prepared without vacuum process and under the low temperature ( < $100^{\circ}C$) by ferrite plating. We have performed ferrite plating of $Fe_{3-x}Mn_{x}O_4(x=0.0~0.023)$ films on glass plate at $80^{\circ}C$. We got the film $9000\AA$ in thickness, having a mirror-like luster. The composition parameter, x, in the $Fe_{3-x}Mn_{x}O_4$ films is much smaller then the corresponding on, x', in the reaction solution(x/x'=O.04). The saturation magnetization($M_{s}$) of $Fe_{3}O_{4}$ ferrite film as measured by a VSM was $M_{s}$=480 emu/cc which agrees with $Fe_{3}O_{4}$ bulk samples.

  • PDF

Effect of Mg content on the density and critical properties of in-situ reacted MgB2 bulk superconductor

  • Jun, Byung-Hyuk;Kim, Dan-Bi;Park, Soon-Dong;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • The effects of Mg content on the pore formation, density and critical properties were investigated in in-situ reacted $MgB_2$ superconductors. The $Mg_{1+x}B_2$, (x=-0.2, 0.0, 0.05, 0.3, 1.0) bulk samples with different Mg contents were heat-treated at $900^{\circ}C$ for 1 h in an Ar atmosphere. The dimensional changes of a pellet's mass and volume after heat-treatment were measured. After heat-treatment process, the sample mass was decreased by Mg evaporation, but the sample volume was expanded by pore formation at the Mg site; therefore, the apparent density was decreased. Spherical pores the same as Mg particles were developed after heat-treatment in all samples, and the pore density was increased with increasing Mg content. As the x of Mg content was increased to 1.0, the apparent density of $Mg_{1+x}B_2$ samples was decreased due to a relatively larger reduction in a mass change. The critical current density of Mg excessive sample of x=0.05 showed the highest values over the applied magnetic fields because the excessive Mg may compensate Mg loss and enhance grain connectivity.

Effects of the Maghemite for Explosive accident Prevention to Liquefied Petroleum Gas (LPG 폭발사고 예방을 위한 Maghemite의 영향)

  • 박영구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.67-78
    • /
    • 1996
  • Gas sensing element, $\gamma-Fe_2O_3$was synthesized by dehydration, reduction, and oxidation of $$${\gamma}$-FeOOH, which was synthesized with $FeSO_4\;{\cdot}\;7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of liquefied-petroleum were studied. The qualities of gas sensing elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH $synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM, TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha -FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$responded more quickly than the bulk-type did. The structure and the relative surface area of the $\alpha-FeOOH $were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Electrical properties of Low Fired Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$ Ceramics (저온에서 소결한 Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$세라믹스의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.652-659
    • /
    • 1996
  • Sintering characteristics and electrical properties of xPb(Mg$_{1}$8/Te$_{1}$8/Mn$_{1}$4/Nb$_{1}$2/) $O_{3}$-(1-x) Pb (Zr$_{1}$2/ $Ti_{1}$2/) $O_{3}$ (x=0.075, 0.1, 0.125) ceramics are investigated. A sintering temperature of ceramics could be reduced to 950.deg. C by a reaction between PbO and B site compound material. The physical properties of 0.1Pb(Mg, Te, Mn, Nb) $O_{3}$ - 0.9Pb(Zr, Ti) $O_{3}$ bulk ceramic with 3wt% glass frit(0.857PbO-0.143W $O_{3}$) were following : den = 7.95 g/cm$^{3}$, T$_{c}$=340.deg. C, .epsilon.$_{33}$= 754, k$_{31}$=0.3 and Q.=1780. The 3-layer piezoelectric transformer by using a tape casting method showed a good monolithic structure, and its voltage setup ratio was 2.5 times higher than that of a single device by using bulk ceramics.s.s.

  • PDF

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.