DOI QR코드

DOI QR Code

Effects of Synthesis Conditions on Luminescence Characteristics of Glutathione Capped ZnSe Nano particles

글루타티온이 캡핑된 ZnSe 나노 입자 발광 특성에 미치는 합성 조건의 영향

  • Back, Geum Ji (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Song, Ha Yeon (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Lee, Min Seo (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Hong, Hyun Seon (Department of Environment & Energy Engineering, Sungshin Women's University)
  • 백금지 (성신여자대학교, 청정융합에너지공학과) ;
  • 송하연 (성신여자대학교, 청정융합에너지공학과) ;
  • 이민서 (성신여자대학교, 청정융합에너지공학과) ;
  • 홍현선 (성신여자대학교, 청정융합에너지공학과)
  • Received : 2021.02.12
  • Accepted : 2021.02.25
  • Published : 2021.02.28

Abstract

Zinc selenide (ZnSe) nanoparticles were synthesized in aqueous solution using glutathione (GSH) as a ligand. The influence of the ligand content, reaction temperature, and hydroxyl ion concentration (pH) on the fabrication of the ZnSe particles was investigated. The optical properties of the synthesized ZnSe particles were characterized using various analytical techniques. The nanoparticles absorbed UV-vis light in the range of 350-400 nm, which is shorter than the absorption wavelength of bulk ZnSe particles (460 nm). The lowest ligand concentration for achieving good light absorption and emission properties was 0.6 mmol. The reaction temperature had an impact on the emission properties; photoluminescence spectroscopic analysis showed that the photo-discharge characteristics were greatly enhanced at high temperatures. These discharge characteristics were also affected by the hydroxyl ion concentration in solution; at pH 13, sound emission characteristics were observed, even at a low temperature of 25℃. The manufactured nanoparticles showed excellent light absorption and emission properties, suggesting the possibility of fabricating ZnSe QDs in aqueous solutions at low temperatures.

Keywords

References

  1. A. P. Alivisatos : Science, 271 (1996) 933. https://doi.org/10.1126/science.271.5251.933
  2. D. J. Norris, A. L. Efros and S. C. Erwin: Science, 319 (2008) 1776. https://doi.org/10.1126/science.1143802
  3. A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh and S. Davaran: Nanoscale Res. Lett., 7 (2012) 480. https://doi.org/10.1186/1556-276X-7-480
  4. C. J. Barrelet, Y. Wu, D. C. Bell and C. M. Lieber: J. Am. Chem. Soc., 125 (2003) 11498. https://doi.org/10.1021/ja036990g
  5. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercher, C. B. Carter, U. R. Korshagen, D. J. Norris and E. S. Aydil: Nano Letters, 7 (2007) 1793. https://doi.org/10.1021/nl070430o
  6. D. J. Norris and M. G. Bawendi: Phys. Rev. B, 53 (1996) 16338. https://doi.org/10.1103/physrevb.53.16338
  7. L. W. Wang and A. Zunger: Phys. Rev. B, 53 (1996) 9579. https://doi.org/10.1103/physrevb.53.9579
  8. C. Wang, Q. Wang, Z. Zhou, W. Wu, Z. Chai, Y. Gao and D. Kong: J. Lumin., 225 (2020) 117354. https://doi.org/10.1016/j.jlumin.2020.117354
  9. L. Langof, L. Fradkin, E. Ehrenfreund, E. Lifshitz, O. I. Micic and A. J. Nozik: Chem. Phys., 297 (2004) 93. https://doi.org/10.1016/j.chemphys.2003.10.016
  10. F. Angel-Huerta, M. P. Gonzalez-Araoz, J. F. SanchezRamirez, J. Diaz-Reyes, J. L. Herrera-Perez, J. S. AriasCeron and J. G. Mendoza-Alvarez: J. Lumin., 197 (2018) 277. https://doi.org/10.1016/j.jlumin.2018.01.056
  11. P. Reiss: New J. Chem., 31 (2007) 1843. https://doi.org/10.1039/b712086a
  12. K. Saikia, P. Deba and E. Kalita: Curr. Appl. Phys., 13 (2013) 925. https://doi.org/10.1016/j.cap.2013.01.042
  13. G. Y. Lan, Y. W. Lin, Y. F. Huang and H. T. Chang: J. Mater. Chem., 17 (2007) 2661. https://doi.org/10.1039/b702469j
  14. Z. Deng, F. L. Lie, S. Shen, I. Ghosh M. Mansuripur and A. J. Muscat: Langmuir, 25 (2009) 434. https://doi.org/10.1021/la802294e
  15. A. Shavel, N. Gaponik and A. Eychmulle: J. Phys. Chem. B, 108 (2004) 5905. https://doi.org/10.1021/jp037941t
  16. L. C. He, Y. A. Zhang, S. L. Zhang, X. T. Zhou, Z. Lin and T. L. Guo: Mater. Technol., 33 (2017) 205. https://doi.org/10.1080/10667857.2017.1396776
  17. H. Hong and M. Kim: Korean J. Mater. Res., 27 (2017) 459. https://doi.org/10.3740/MRSK.2017.27.9.459
  18. H. Hong, M. Kim, E. Byun and Y. Lee: J. Crystal Growth., 535 (2020) 125523. https://doi.org/10.1016/j.jcrysgro.2020.125523
  19. C. Lee, U. Lee and H. Che: Vac. Magazine, 6 (2017) 29.
  20. F. O. Silva, M. S. Carvalho, R. Mendonca, W. A. Macedo, K. Balzuweit, P. Reiss and M. A. Schiavon: Nanoscale Res. Lett., 7 (2012) 1. https://doi.org/10.1186/1556-276X-7-1
  21. F. Jiang and A. J. Muscat: Langmuir, 28 (2012) 12931. https://doi.org/10.1021/la301186n
  22. S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J. Anderson and J. D. Edwards: Nanotechnology, 19 (2008) 195601. https://doi.org/10.1088/0957-4484/19/19/195601
  23. P. Wu, Zh. Fang, X. Zhong and Y. J. Yang: Colloids and Surfaces A: Physicochem. Eng. Aspects, 375 (2011) 109. https://doi.org/10.1016/j.colsurfa.2010.11.070
  24. F. Jiang and A. J. Muscat: Langmuir, 28 (2012) 12931. https://doi.org/10.1021/la301186n
  25. L. Sun, F. Gong, Ch. Zhou, H. Wang, and Sh. Yao: Mater. Express, 5 (2015) 219. https://doi.org/10.1166/mex.2015.1234