DOI QR코드

DOI QR Code

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • Received : 2015.03.28
  • Accepted : 2015.06.02
  • Published : 2015.12.25

Abstract

A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Science and Technology Information

References

  1. K. Aoto, N. Uto, Y. Sakamoto, T. Ito, M. Toda, S. Kotake, Design study and R&D progress on Japan sodium-cooled fast reactor, J. Nucl. Sci. Technol. 48 (2011) 463-471. https://doi.org/10.1080/18811248.2011.9711720
  2. M. Ichimiya, T. Mizuno, S. Kotake, A next generation sodiumcooled fast reactor concept and its R&D program, Nucl. Eng. Technol. 39 (2007) 171-186. https://doi.org/10.5516/NET.2007.39.3.171
  3. M. Konomura, M. Ichimiya, Design challenges for sodium cooled fast reactors, J. Nucl. Mater 371 (2007) 250-269. https://doi.org/10.1016/j.jnucmat.2007.05.012
  4. D. Hahn, J. Chang, Y.-I. Kim, Y.-I. Kim, Y.-I. Kim, C.B. Lee, S.-O. Kim, Advanced SFR design concepts and R&D activities, Nucl. Eng. Technol. 41 (2009) 427-446. https://doi.org/10.5516/NET.2009.41.4.427
  5. J.-I. Saito, K. Ara, A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium, Nucl. Eng. Des. 240 (2010) 2664-2673. https://doi.org/10.1016/j.nucengdes.2010.07.017
  6. K. Ara, K. Sugiyama, H. Kitagawa, M. Nagai, N. Yoshioka, Study on chemical reactivity control of sodiumby suspended nanoparticles I, J. Nucl. Sci. Technol. 47 (2010) 1165-1170. https://doi.org/10.1080/18811248.2010.9720983
  7. K. Ara, K. Sugiyama, H. Kitagawa, M. Nagai, N. Yoshioka, Study on chemical reactivity control of sodiumby suspended nanoparticles II, J. Nucl. Sci. Technol. 47 (2010) 1171-1181. https://doi.org/10.1080/18811248.2010.9720984
  8. M. Nishimura, K. Nagai, T. Onojima, J.-I. Saito, K. Ara, K.-I. Sugiyama, The sodium oxidation reaction and suppression effect of sodium with suspended nanoparticlesegrowth behavior of dendritic oxide during oxidation, J. Nucl. Sci. Technol. 49 (2012) 71-77. https://doi.org/10.1080/18811248.2011.636557
  9. J.-I. Saito, K. Ara, Chemical reactivity suppression of liquid sodium by suspended nanoparticles, Trans. Am. Nucl. Soc. 107 (2012) 433-436.
  10. J.-I. Saito, K. Nagai, K. Ara, Study on liquid sodium with suspended nanoparticlesd(2) Atomic interaction and characteristics of liquid sodium with suspended nanoparticles, in: AIP Conference Proceedings, 2012.
  11. G. Park, S.J. Kim, M.H. Kim, H.S. Park, Experimental study of the role of nanoparticles in sodiumewater reaction, Nucl. Eng. Des. 277 (2014) 46-54. https://doi.org/10.1016/j.nucengdes.2014.05.046
  12. S.J. Kim, G. Park, M.H. Kim, H.S. Park, J. Baek, A theoretical study of Ti nanoparticle effect on sodium water reaction: using ab initio calculation, Nucl. Eng. Des. 281 (2015) 15-21. https://doi.org/10.1016/j.nucengdes.2014.10.019
  13. J.N. Israelachvili, Intermolecular and Surface Forces, Revised Third Ed., Academic Press, USA, 2011.
  14. B. Derjaguin, Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim, USSR 14 (1941) 633-662.
  15. E.J.W. Verwey, J.T.G. Overbeek, K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer, Elsevier, New York, 1948.
  16. P. Debye, E. Huckel, De la theorie des electrolytes. i. abaissement du point de congelation et phenomenes associes, Phys. Z. 24 (1923) 185-206.
  17. D. Grasso, K. Subramaniam, M. Butkus, K. Strevett, J. Bergendahl, A review of non-DLVO interactions in environmental colloidal systems, Rev. Environ. Sci. Biotechnol. 1 (2002) 17-38. https://doi.org/10.1023/A:1015146710500
  18. W. van Megen, I. Snook, Solvent structure and solvation forces between solid bodies, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 75 (1979) 1095-1102. https://doi.org/10.1039/f29797501095
  19. W. Van Megen, I. Snook, Solvation forces in simple dense fluids. II. Effect of chemical potential, J. Chem. Phys. 74 (1981) 1409-1411. https://doi.org/10.1063/1.441205
  20. I. Snook, W. Van Megen, Solvation forces in simple dense fluids. III. Monolayer and submonolayer region, J. Chem. Phys. 75 (1981) 4738-4739. https://doi.org/10.1063/1.442595
  21. P. Attard, J.L. Parker, Oscillatory solvation forces: a comparison of theory and experiment, J. Phys. Chem. 96 (1992) 5086-5093. https://doi.org/10.1021/j100191a063
  22. I. Snook, W. Van Megen, Solvation forces in simple dense fluids. I, J. Chem. Phys. 72 (2008) 2907-2913.
  23. H. Hamaker, The Londonevan der Waals attraction between spherical particles, Physica 4 (1937) 1058-1072. https://doi.org/10.1016/S0031-8914(37)80203-7
  24. J.-N. Israelachvili, The calculation of van der Waals dispersion forces between macroscopic bodies, Proc. R. Soc. Lond, A Math. Phys. Sci. 331 (1972) 39-55. https://doi.org/10.1098/rspa.1972.0163
  25. E. Lifshitz, The theory of molecular attractive forces between solids, Sov. Phys. JETP 2 (1956) 73-83.
  26. J.C. Sutherland, E. Araiawa, R. Hamm, Optical properties of sodium in the vacuum ultraviolet, J. Opt. Soc. Am. 57 (1967) 645-650. https://doi.org/10.1364/JOSA.57.000645
  27. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Appl. Opt. 22 (1983) 1099-1119. https://doi.org/10.1364/AO.22.001099
  28. B.V. Derjaguin, Untersuchungen uber die Reibung und Adhasion, IV, Coll. Polym. Sci. 69 (1934) 155-164.
  29. W.A. Steele, The physical interaction of gases with crystalline solids: I. Gasesolid energies and properties of isolated adsorbed atoms, Surf. Sci. 36 (1973) 317-352. https://doi.org/10.1016/0039-6028(73)90264-1
  30. J.E. Jones, On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature, in: Proceedings of the Royal Society of London. Series a, Containing Papers of a Mathematical and Physical Character, 1924, pp. 441-462.
  31. P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864-B871. https://doi.org/10.1103/PhysRev.136.B864
  32. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502 (19p). https://doi.org/10.1088/0953-8984/21/39/395502
  34. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  35. M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616-3621. https://doi.org/10.1103/PhysRevB.40.3616
  36. K.A. Fichthorn, Y. Qin, Molecular-dynamics simulation of colloidal nanoparticle forces, Ind. Eng. Chem. Res. 46 (2006) 5477-5481.
  37. K.A. Fichthorn, Y. Qin, Molecular dynamics simulation of the forces between colloidal nanoparticles in LennardeJones and n-decane solvent, Granular Matter 10 (2008) 105-111. https://doi.org/10.1007/s10035-007-0074-y
  38. Y. Qin, K.A. Fichthorn, Molecular-dynamics simulation of forces between nanoparticles in a LennardeJones liquid, J. Chem. Phys. 119 (2003) 9745-9754. https://doi.org/10.1063/1.1615493
  39. M. Trautz, Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestatigung der Additivitat von Cv-3/2R. Neue Bestimmung der Integrationskonstanten und der Molekuldurchmesser, Z. Anorg, Allg. Chem. 96 (1916) 1-28. https://doi.org/10.1002/zaac.19160960102