• Title/Summary/Keyword: Building Material

Search Result 2,834, Processing Time 0.029 seconds

An optimal inventory management system for high-rise building -Focused on Re-bar Works- (초고층 건축공사의 특수성을 고려한 최적 자재 재고 관리 방안에 관한 연구 -철근공사를 중심으로-)

  • Kim, Geun-Hwan;Lee, Su-Hwan;Yun, Jung-Suk;Park, Kyung-Mo;Kim, Chang-Duk
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.151-157
    • /
    • 2013
  • Since high-rise building construction sites are usually located in crowded city areas, sufficient spaces for the inventories of key materials are rarely available. This spatial constraints have been one of the critical challenge that may cause productivity loss and increasing costs of the high-rise building construction projects. The proper material inventory management is certaing a key to the success of high-rise building construction projects as it handles difficulty of securing material stock yards, changes in demands, uncertain delivery time through integrating the construction schedules and actively responding to the key materials attributes. In this light, this research analyzes the latest inventory model, (Q,r) model, in accordance with the high rise building characteristics. This research suggests an optimal inventory management of re-bar considering various demands and lead times. The case study is also presented with regard to the re-bar inventory management.

A Study on the Effect Applying the Energy Variation and Temperature by Window type of Building (건물의 창호종류에 따른 에너지 변화량 및 온도에 미치는 영향에 관한 연구)

  • Chung, Hwan-Kyo;Kim, Young-Il;Cho, Jin-Hwan;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.211-220
    • /
    • 2012
  • In study to investigate losing energy of building in window, we analyze the heating loss parts in the material of structure throughout modeling of window system. Also, by making modeling in the building using simulation, we investigate the heating load variation of building in window. According to the type of windows and the material of structure, we analyze the energy variation of building and a temperature variation.

A Study on the Mock up Test for Reduction of HCHO Using the Functional Gypsum Board (기능성 석고보드의 폼알데히드(HCHO) 저감성능 평가를 위한 실물시험(Mock up test)연구)

  • Kim, Hea-Jeong;Song, Kyoo-Dong;Lee, Yun-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.814-819
    • /
    • 2008
  • The purpose of this study was developing the building materials for creation the comfortable IAQ. By reducing formaldehyde(HCHO) known as the main factors of Sick House Syndrome. This material must be revealed the physical and eco-friendly performance, so this study set up the basic standards for building materials. The source of physical performance evaluation is Korea Industrial Standards and the base of environmental ability is the Eco Label considering certificated system related to an apartment house. Because the developed material was satisfied with the established standards, it was tested in mock-up room for obtaining the real date from indoor air. The mock-up test was conducted according environmental standard method for indoor air Quality of the ministry of environment. The result of this study were as follows; the functional building materials had a effect to reduce the formaldehyde concentration for a initial period without wall paper, so additional development is needed for application with the wall paper and the available period.

A Study on Characteristics of Liquid-Crystal Based Cell for Smart Window (액정 기반 스마트 윈도우용 셀의 특성 연구)

  • Park, Byung-Gyu;Kim, Sun-Keum;Lee, Seung-Woo;So, Soon-Yeol;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.271-275
    • /
    • 2020
  • Smart windows are used as windows and doors to determine the cooling and heating efficiency of a building. They have characteristics that can increase the energy efficiency of a building, which leads to energy savings. In addition, smart windows can control the amount of light transmitted from the external environment of a building to the interior of a building according to the needs of the user. In this study, a 297×210 ㎟ liquid crystal cell capable of controlling light transmittance was fabricated using a liquid crystal device as an optical shutter. The effect of driving voltage on the transmittance and the effect of the thermal environment on the driving stability were analyzed. We confirmed the applicability of using smart windows as exterior building materials.

Building Integrated Photovoltaics: Technical and Aesthetic Prospects

  • Polgampola Chamani Madara;Hasnain Yousuf;Muhammad Aleem Zahid;Suresh Kumar Dhungel;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.154-163
    • /
    • 2024
  • The energy demand in the world is expected to exceed 740 million TJ by 2040 and our dependence on fossil fuels needs to be switched to sustainable and renewable energy sources like solar energy. Building Integrated Photovoltaic (BIPV) is one of the best approaches to extracting solar energy. There are more than 200 BIPV products in the market currently but when it comes to integrating these products into the technical aspects such as buildings' structural integrity, thermal, daylight retainment and aesthetic prospects to be considered. The share of BIPV integration potential of different building types in the world of residential, agricultural, industrial, commercial and other buildings account for 66%, 4.8%, 8.1%, 19.9%, and 1.2% accordingly. Many solar technologies developed to achieve architectural requirements, but the main problem is the trade-off between efficiency and aesthetic appeal, which is less than 10% in coloured and transparent solar modules. This paper discusses the different applications of solar photovoltaics (PV) in building architecture, technical requirements, and different module technologies. The article provides a comprehensive guide for researchers and designers working on the development of BIPV integrations.

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

A Study on a Database Management System for Health-friendly Building Materials (건강친화형 건축자재의 DB화 연구 - 실내마감재를 중심으로 -)

  • Kwon, Gi-Deoc;Lee, Dong-Hoon;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.3-11
    • /
    • 2009
  • Building materials have a great impact on the health of a building's occupants. Thus, it is imperative that their health-related properties be taken into during the course of construction project. Unfortunately, no current database system exists that can provide information on the health performance of building materials at each stage of construction project management, from planning and design to building and maintenance. therefore, an inordinate amount of time and effort is required to choose the right health-friendly materials(DBHM). To solve this problem, this study aims at building a database management system for health-friendly building materials. It analyzes the health-related properties and performance of various materials, and proposes a database structure and operation algorithm. The system proposed in this study is expected to contribute to the objective evaluation of health-friendly building materials through the accumulation of relevant data.

Development of the lift-up and procurement system for Just-in-Time in the Building Construction (건설공사의 적시생산(Just-In-Time)을 위한 양중시스템 개발)

  • Shin Bong-Soo;Kim Chang-Duk;Suh Sang-Wook;Lim Hyoung-Chul;Choi Woon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.182-191
    • /
    • 2003
  • The material lift-up and procurement management for high-rise buildings is complex and critical key to the success of projects. It has been hardly managed by the heuristic or rule-of-thumb techniques which are adapted in usual construction building sites. Especially in downtown high-rise residential building project sites, the limit of heuristic management techniques is critical. It has space constraint for materials loading and site transportation especially in finish work phases in which construction period diverse work trades struggle for their own material and manpower transportation. Hence, it is essential to adapt JIT(Just-In-Time) concept in these particular types of building construction project sites. According to the analysis of the case project sites, the communication and flow of relevant information regarding material lift-up and transportation in project sites is the key factor for successful performance. Therefore, this study analyzes the flow and site transportation of the key materials and provides the system, PLUTO(Procurement & Lift-Up for material Transport Optimizing system). This study also applies the system in the case site and verifies the model validation in actual project.

A Study on the 'Transparency' of Office Lobbies (오피스 로비 공간에 나타난 '투명성'의 표현에 관한 연구)

  • Lee, Hyo-Chang;Ha, Mi-Kyoung
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.05a
    • /
    • pp.113-118
    • /
    • 2006
  • The lobby is the space that contributes the most to conveying the first impression of an enterprise or company that is occupying a building, and enhances the quality of the urban or business environment around an office building. Transparency is the biggest change in architecture since the modern age began, and it is the most important element of the lobby expression methods. Therefore this study was an attempt to understand the expression method of transparency which is expressed in the lobby space of office buildings, and used documentary survey and field survey to analyze it. In the examination of the theoretical background of transparency to make a specific study purpose, and based on an on-the-spot probe document, an attempt was made to grasp the expression method of Visual Transparency and Phenomenal Transparency. The data collected during this investigation was studied and a correlation coefficient. A summary of the findings of this study is as follows: 1) Transparent materials does not appear often in floors. But Phenomenal Transparency material is used in the floor. 2) During the survey it was discovered that Visual Transparency was often used in the walls of each investigated building. Phenomenal Transparency materials are found less in walls than in the floors of lobbies. 3) The expression methods that appeared the most in ceilings among the Visual Transparent expression methods. In the case of Phenomenal Transparency, the highest distribution is seen in ceilings. 4) The result of the analyzation of the correlation coefficient of Visual Transparency and Phenomenal Transparency is as follows: Expression method: There is more than one expression method of transparency, 'Open Sight', 'Light Material' and 'Surface Material' methods were introduced in case of the introduction of 'Transparent Material' among Visual Transparency in office building lobby space planning. If the 'Superimposed Space' method is introduced, then the 'Ambiguous Border' or 'Dual Sight' methods are introduced.

  • PDF

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.