DOI QR코드

DOI QR Code

Building Integrated Photovoltaics: Technical and Aesthetic Prospects

  • Polgampola Chamani Madara (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hasnain Yousuf (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Muhammad Aleem Zahid (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Suresh Kumar Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Youngkuk Kim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin Yi (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • Received : 2023.09.22
  • Accepted : 2023.11.17
  • Published : 2024.03.01

Abstract

The energy demand in the world is expected to exceed 740 million TJ by 2040 and our dependence on fossil fuels needs to be switched to sustainable and renewable energy sources like solar energy. Building Integrated Photovoltaic (BIPV) is one of the best approaches to extracting solar energy. There are more than 200 BIPV products in the market currently but when it comes to integrating these products into the technical aspects such as buildings' structural integrity, thermal, daylight retainment and aesthetic prospects to be considered. The share of BIPV integration potential of different building types in the world of residential, agricultural, industrial, commercial and other buildings account for 66%, 4.8%, 8.1%, 19.9%, and 1.2% accordingly. Many solar technologies developed to achieve architectural requirements, but the main problem is the trade-off between efficiency and aesthetic appeal, which is less than 10% in coloured and transparent solar modules. This paper discusses the different applications of solar photovoltaics (PV) in building architecture, technical requirements, and different module technologies. The article provides a comprehensive guide for researchers and designers working on the development of BIPV integrations.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.20224000000360). This research was supported by Korea Electric Power Corporation (No.R21XO01-22).

References

  1. M. Vasiliev, M. Nur-E-Alam, and K. Alameh, Energies, 12, 1080 (2019). doi: https://doi.org/10.3390/en12061080
  2. M. M. Uddin, J. Jie, C. Wang, C. Zhang, and W. Ke, Energy Build., 286, 112939 (2023). doi: https://doi.org/10.1016/j.enbuild.2023.112939
  3. M. Li, T. Ma, J. Liu, H. Li, Y. Xu, W. Gu, and L. Shen, Appl. Energy, 253, 113509 (2019). doi: https://doi.org/10.1016/j.apenergy.2019.113509
  4. T. E. Kuhn, C. Erban, M. Heinrich, J. Eisenlohr, F. Ensslen, and D. H. Neuhaus, Energy Build., 231, 110381 (2021). doi: https://doi.org/10.1016/j.enbuild.2020.110381
  5. S. Christopher, M. P. Vikram, C. Bakli, A. K. Thakur, Y. Ma, Z. Ma, H. Xu, P. M. Cuce, E. Cuce, and P. Singh, J. Cleaner Prod., 405, 136942 (2023). doi: https://doi.org/10.1016/j.jclepro.2023.136942
  6. A. H. Hamzah and Y. I. Go, e-Prime - Adv. Electr. Eng. Electron. Energy, 3, 100105 (2023). doi: https://doi.org/10.1016/j.prime.2022.100105
  7. M. S. Thopil, R. C. Bansal, L. Zhang, and G. Sharma, Energy Strategy Rev., 21, 88 (2018). doi: https://doi.org/10.1016/j.esr.2018.05.001
  8. E. Saretta, P. Caputo, and F. Frontini, Sustainable Cities Soc., 44, 343 (2019). doi: https://doi.org/10.1016/j.scs.2018.10.002
  9. A. Gok, E. Ozkalay, G. Friesen, and F. Frontini, IEEE J. Photovoltaics, 10, 1371 (2020). doi: https://doi.org/10.1109/JPHOTOV.2020.3001181
  10. J. Hossain, A.F.A. Kadir, A. N. Hanafi, H. Shareef, T. Khatib, K. A. Baharin, and M. F. Sulaima, Energies, 16, 1609 (2023). doi: https://doi.org/10.3390/en16041609
  11. S. Freitas and M. C. Brito, Renewable Energy Focus, 31, 73 (2019). doi: https://doi.org/10.1016/j.ref.2019.09.002
  12. N. M. Chivelet, K. Kapsis, H. R. Wilson, V. Delisle, R. Yang, L. Olivieri, J. Polo, J. Eisenlohr, B. Roy, L. Maturi, G. Otnes, M. Dallapiccola, and W.M.P.U. Wijeratne, Energy Build., 262, 111998 (2022). doi: https://doi.org/10.1016/j.enbuild.2022.111998
  13. A. M. Rusen and D. Tokar, Rom. J. Civ. Eng., 11, 423 (2020). doi: https://doi.org/10.37789/rjce.2020.11.4.3
  14. M. K. Basher, M. Nur-E-Alam, M. M. Rahman, K. Alameh, and S. Hinckley, Buildings, 13, 863 (2023). doi: https://doi.org/10.3390/buildings13040863
  15. Z. Li and T. Ma, Appl. Energy, 324, 119761 (2022). doi: https://doi.org/10.1016/j.apenergy.2022.119761
  16. M. Formolli, T. Kleiven, and G. Lobaccaro, Renewable Sustainable Energy Rev., 177, 113231 (2023). doi: https://doi.org/10.1016/j.rser.2023.113231
  17. R. Yang, Y. Zang, J. Yang, R. Wakefield, K. Nguyen, L. Shi, B. Trigunarsyah, F. Parolini, P. Bonomo, F. Frontini, D. Qi, Y. Ko, and X. Deng, Renewable Sustainable Energy Rev., 173, 113112 (2023). doi: https://doi.org/10.1016/j.rser.2022.113112
  18. K. Berger, S. Boddaert, M. D. Buono, A. Fedorova, F. Frontini, S. Inoue, H. Ishii, K. Kapsis, J. T. Kim, P. Kovacs, M. Machado, N. M. Chivelet, A. Schneider, and H. R. Wilson, Analysis of Requirements, Specifications and Regulation of BIPV (Publishing IEA, 2019). https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_15_R08__Analysis_of_requirements_specifications_regulation_of_BIPV__report.pdf
  19. M. Tripathy, P. K. Sadhu, and S. K. Panda, Renewable Sustainable Energy Rev., 61, 451 (2016). doi: https://doi.org/10.1016/j.rser.2016.04.008
  20. W.M.P.U. Wijeratne, T. I. Samarasinghalage, R. J. Yang, and R. Wakefield, Appl. Energy, 309, 118476 (2022). doi: https://doi.org/10.1016/j.apenergy.2021.118476
  21. A. K. Shukla, K. Sudhakar, and P. Baredar, Energy Build., 140, 188 (2017). doi: https://doi.org/10.1016/j.enbuild.2017.02.015
  22. P. K. Ng and N. Mithraratne, Renewable Sustainable Energy Rev., 31, 736 (2014). doi: https://doi.org/10.1016/j.rser.2013.12.044
  23. A. Taser, B. K. Koyunbaba, and T. Kazanasmaz, Sol. Energy, 251, 171 (2023). doi: https://doi.org/10.1016/j.solener.2022.12.039
  24. J. Curpek and M. Cekon, Renewable Energy, 152, 368 (2020). doi: https://doi.org/10.1016/j.renene.2020.01.070
  25. A. Ghosha, N. Sarmah, S. Sundaram, and T. K. Mallick, Sol. Energy, 190, 608 (2019). doi: https://doi.org/10.1016/j.solener.2019.08.049
  26. E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao, L. Shao, E. Essah, A. C. Oliveira, T. del Cano, E. Rico, J. L. Lechon, L. Andrade, A. Mendes, and Y. B. Atli, Eng. Sci. Technol. Int. J., 20, 833 (2017). doi: https://doi.org/10.1016/j.jestch.2017.01.009
  27. H. Gholami and H. N. Rostvik, Energy, 204, 117931 (2020). doi: https://doi.org/10.1016/j.energy.2020.117931
  28. J. Curpek, M. Cekon, O. Sikula, and R. Slavik, Energy Build., 279, 112665 (2023). doi: https://doi.org/10.1016/j.enbuild.2022.112665
  29. C. Ballif, L. E. Perret-Aebi, S. Lufkin, and E. Rey, Nat. Energy, 3, 438 (2018). doi: https://doi.org/10.1038/s41560-018-0176-2
  30. M. Debbarma, K. Sudhakar, and P. Baredar, Resour.-Effic. Technol., 3, 263 (2017). doi: https://doi.org/10.1016/j.reffit.2016.11.013
  31. M. Gutschner, S. Nowak, D. Ruoss, P. Toggweiler, and T. Schoen, IEA: International Energy Agency. https://iea-pvps.org/wp-content/uploads/2020/01/rep7_04.pdf (Accessed 7 June 2023).
  32. X. Feng, T. Ma, Y. Yamaguchi, J. Peng, Y. Dai, and D. Ji, Energy Sustainable Dev., 72, 19 (2023). doi: https://doi.org/10.1016/j.esd.2022.11.006
  33. M. Pelle, F. Causone, L. Maturi, and D. Moser, Energies, 16, 1991 (2023). doi: https://doi.org/10.3390/en16041991
  34. A. Royset, T. Kolas, and B. P. Jelle, Energy Build., 208, 109623 (2019). doi: https://doi.org/10.1016/j.enbuild.2019.109623
  35. G. Peharz and A. Ulm, Renewable Energy, 129, 299 (2018). doi: https://doi.org/10.1016/j.renene.2018.05.068
  36. G. Peharz, P. Bonomo, E. Sarett, and F. Frontini, Coloured BIPV: Market, Research and Development | IEA PVPS Task 15, Subtask E. (Publishing IEA, 2019). https://iea-pvps.org/key-topics/iea-pvps-15-r07-coloured-bipvreport/ (Accessed 20 April 2023).
  37. M. Pelle, E. Lucchi, L. Maturi, A. Astigarraga, and F. Causone, Energies, 13, 4506 (2020). doi: https://doi.org/10.3390/en13174506
  38. C. Ji, Z. Zhang, T. Masuda, Y. Kudo, and L. J. Guo, Nanoscale Horiz., 4, 874 (2019). doi: https://doi.org/10.1039/C8NH00368H
  39. A.A.F. Husain, W.Z.W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, Renewable Sustainable Energy Rev., 94, 779 (2018). doi: https://doi.org/10.1016/j.rser.2018.06.031
  40. T. Chen, K. F. Tai, G. P. Raharjo, C. K. Heng, and S. W. Leow, J. Build. Eng., 63, 105469 (2023). doi: https://doi.org/10.1016/j.jobe.2022.105469
  41. M. Morinia and R. Corrao, Energy Procedia, 111, 982 (2017). doi: https://doi.org/10.1016/j.egypro.2017.03.261
  42. Y. Kim, J. Son, S. Shafian, K. Kim, and J. K. Hyun, Adv. Opt. Mater., 13, 1800051 (2018). doi: https://doi.org/10.1002/adom.201800051
  43. P. Sehati, I. Malmros, S. Karlsson, and P. Kovacs, RISE Research Institutes of Sweden (2019). doi: https://doi.org/10.13140/RG.2.2.11147.13602
  44. S. Wittkopf, Climate Resilient Cities - Energy Efficiency & Renewables in the Digital Era 4-6 September 2019 (EPFL Lausanne, Switzerland, 2019). doi: https://doi.org/10.1088/1742-6596/1343/1/012090
  45. T. Gewohn, M. R. Vogt, B. Lim, C. Schinke, and R. Brendel, IEEE J. Photovoltaics, 11, 138 (2021). doi: https://doi.org/10.1109/JPHOTOV.2020.3034001
  46. E.P.S. Jose, A. Sanchez-Diaz, M. Stella, E. Martinez-Ferrero, M. I. Alonso, and M. Campoy-Quiles, Sci. Technol. Adv. Mater., 19, 823 (2018). doi: https://doi.org/10.1080/14686996.2018.1530050
  47. S. K. Chunduri and M. Schmela, A Selection of Interesting Global PV Product Releases in First 9 Months of 2022 (Taiyang News, Duesseldorf, Germany, 2022). https://taiyangnews.info/download.php?filename=https://taiyangnews.info/my-account/&date=2022/10/28 (Accessed 15 April 2023).
  48. M. Tripathy, P. K. Sadhu, and S. K. Panda, Renewable Sustainable Energy Rev., 61, 451 (2016). doi: https://doi.org/10.1016/j.rser.2016.04.008
  49. M. Tabakovic, H. Fechner, W. van Sark, A. Louwen, G. Georghiou, G. Makrides, E. Loucaidou, M. Ioannidou, I. Weiss, S. Arancon, and S. Betz, Energy Procedia, 111, 993 (2017). doi: https://doi.org/10.1016/j.egypro.2017.03.262
  50. A. Ghosha, N. Sarmah, S. Sundaram, and T. K. Mallick, Sol. Energy, 190, 608 (2019). doi: https://doi.org/10.1016/j.solener.2019.08.049
  51. P. Bonomo, G. Eder, N. M. Chivelet, J. Eisenlohr, F. Frontini, C. Kapsis, A. Scognamiglio, H. R. Wilson, and R. Yang, Task 15 Enabling Framework for the Development of BIPV Categorization of BIPV Applications (Publishing IEA, 2021). https://iea-pvps.org/research-tasks/enabling-framework-for-thedevelopment-of-bipv/ (Accessed 16 April 2023).
  52. Bank Group, Global Photovoltaic Power Potential by Country, https://globalsolaratlas.info/global-pv-potential-study (13 November 2023).