• 제목/요약/키워드: Building Integrated PV

검색결과 115건 처리시간 0.027초

A Study on the PCS Characteristics of a 10kW BIPV System

  • Yoon, Hyung-Sang;Cha, In-Su;Yoon, Jeong-Phil;Lee, Jeong-Il;Seo, Jang-Su
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.163-170
    • /
    • 2008
  • A BIPV(Building Integrated PV) system is united by a constituent outer covering and can expect dual effects that reduce expenses for the establishment of a PV system. It is a profitable technology because it does not need a building as it is a stand alone PV system. In this paper, output characteristics analysis of PCS and web-based monitoring of 10kW BIPV, were stimulated and examined for validity. The BIPV system proposed in this paper was established in at BIC (Biotechnology Industrialization Center) of Dongshin University, which was composed with PCS and Web-monitoring system.

12kW급 건물일체형 태양광발전시스템 사례분석 (Case Study on 12kW Building Integrated Photovoltaic System)

  • 박경은;강기환;김현일;소정훈;유권종;김준태;이길송
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

건물일체형 태양광 발전의 특징과 최대 에너지 수급기법 적용에 대한 연구 (A Study on the Characteristic of Building Integrated Photovoltaic Power Generation and Application of MPPT Control)

  • 조영찬;신덕식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.170-171
    • /
    • 2019
  • 본 논문은 건물일체형 태양광 발전(Building Integrated PV:BIPV)의 에너지 수급에 대한 특징과 보다 효율적인 시스템 설계 및 최대 에너지 수급기법에 대해 기술한다.

  • PDF

건물일체형 태양광발전시스템의 실증분석 (The Output Characteristics of 3kW BIPV System)

  • 김지훈;변문걸;이강연;김평호;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF

건물통합을 위한 태양에너지 cogeneration panel 특성 분석 연구 (The Performance Assessment Study of Solar Energy Cogeneration panel for Building Integrated System)

  • 김용환;강은철;현명택;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.35-42
    • /
    • 2006
  • Solar Thermal-Electric Integrated system can be used to generate heat and electricity simultaneously and can improve indoor all qualify. So, it can save heating and electricity cost as it operates at relatively lower temperatures. In this study, one pv module was fixed on a normal wall and a pv module was mounted on a solarwall. And a ventilation fan in the solar energy cogeneration panel was operated from 12:00 to 17:00 hours. Experimental results are recorded and anaysized. The comparison of results show that the temperature of PV on solar energy cogeneration panel was decreased by $7{\sim}9^{\circ}C$ and the electrical output was improved by $2{\sim}3W$ compared with a PV system without solarwall.

비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발 (Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design)

  • 홍성문;김대성;김민철;김주형
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

스팬드럴 적용 BIPV의 후면 열 특성에 관한 연구 (A Study on the Thermal Characteristics of BIPV Applied on Curtain Wall Spandrel)

  • 이상길;강태우;장한빈;강기환;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.120-126
    • /
    • 2012
  • BIPV is applied to buildings in various forms. However, there are some aspects of consideration in applying PV systems in buildings, such as attaching methods, PV electrical efficiency, appearance and so on. BIPV can be installed on curtain wall spandrel as finishing material, which may combine with insulation. The thermal characteristic of spandrel with BIPV has rarely been studied; the temperature of air space between PV module and insulation layer affects both the electrical behavior of PV module and the energy load in a building. This paper aims to analyse the temperature variation of the layers in BIPV spandrels. In this paper, the temperature of layers, including the air space and PV module, was measured for three different type of BIPV applications on spandrel. The results show that the temperature of air layer for the spandrel with G/G(2) type BIPV module on October was the highest among other months.

주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구 (The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System)

  • 이강록;오명택;박경은;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.

발코니형 PV시스템의 최적설계를 위한 어레이 배열 특성 고찰 (A Study on the characteristic of array arrangement for the optimum design of the balcony PV system)

  • 강기환;소정훈;김현일;박경은;유권종;서승직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1678-1680
    • /
    • 2005
  • This paper presents Building Integrated Photovoltaic system of the balcony type which is influenced by conditions such as irradiation, module temperature, shade and array arrangement. When architecture component, trees and cloud shade connecting array in series, total PV array current is reduced. So, before PV system design, a planner have to simulate many situations. And then array should be composed suitable for parallel and series modules. By the results, it is very important to develop optimal design of array considering shade effect for the balcony PV system.

  • PDF

건물일체형 투명 모듈의 온도 변화에 따른 발전 특성 (Generation characteristics of transparent BIPV module according to temperature change)

  • 박경은;강기환;김현일;유권종;장대호;이문희;김준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.210-211
    • /
    • 2007
  • Amid booming PV(photovoltaic) industry, BIPV(Building Integrated PV) is one of the best fascinating PV application technologies. To apply PV in building, variable factors should be reflected such as installation position, shading, temperature effect and so on. Especially a temperature should be considered, for it affects both electrical efficiency of PV module and heating and cooling load in building. Transparent PV modules were designed as finished material for spandrels are presented in this paper. The temperature variation of the modules with and without air gap and insulation were compared and analyzed. The results showed that the module with air gap and insulation has a much larger temperature variation than another transparent module. The temperature of the module reached by 55degree C under vertical irradiance of lower 500$W/m^2$. And the temperature difference between these modules was about 15degree C. To analyze the output performance of module according to temperature variation, separate module was manufactured and measured by sun-simulator. The results showed that 1 degree temperature rise reduced about 0.45% of output power.

  • PDF