• 제목/요약/키워드: Building Integrated PV

검색결과 115건 처리시간 0.032초

스펜드럴부 적용 BIPV 모듈의 열 특성 분석 (Analysis on Thermal Performance of BIPV in Spandrel)

  • 김하련;김진희;강기환;유권종;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2011
  • Recently, the cases of BIPV(Building-integrated Photovoltaic) have been increased with interest in renewable energy application for buildings. PV System in building can perform a variety of roles as an energy supplier, exterior materials, aesthetic element and etc. To apply PV modules in buildings, various factors should be considered, such as the installation angle and orientation of PV module, shading, and temperature. The temperature of PV modules that are attached to building surfaces especially is one of the most important factors, as it affects both the electrical efficiency of a PV module and the energy load in a building. BIPV modules designed as finished material for spandrels are presented in this paper. The purpose of this study is to analysis on the thermal performance characteristics of BIPV modules. This study dealt with different types of BIPV modules depending on the backside material, such as clear glass and backsheet. The analysis of monitoring data shows that the PV module temperature was closely related to the solar radiation on the BIPV module surface, and the BIPV used at the backside also had an effect on the PV module temperature that in turn determines its thermal performance.

  • PDF

발코니 일체형 태양광발전시스템의 발전성능 분석 (Analysis of Performance of Balcony Integrated PV System)

  • 김현일;강기환;박경은;소정훈;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

태양광발전시스템의 건물 적용에 대한 인식 조사 연구 (A Survey of the Recognition of Photovoltaic System for Building Application)

  • 이충국;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제23권1호
    • /
    • pp.17-28
    • /
    • 2003
  • This study aims to investigate and analyze the overall recognition of the photovoltaic system for the application of BIPV(Building Integrated Photovoltaic) in Korea. For this purpose, a survey was carried on through questionnaires answered by 6 groups of experts such as construction engineers, registered architects, mechanical engineers, electrical engineers, university or college professors, and others who are ranked high in their companies or universities or colleges and who mostly seem to be eager to participate in the development of the PV system and to make a business of the system. The results of the survey are as follows: 1. About 95% of those experts who answered the questionnaire have known about renewable energy, and 93% of them are interested in solar energy as alternative energy 2. Host experts have a lot of information on the solar energy system, but have scanty information on the PV system. 3. The experts in the educational and research field have researched for the reasonable period of the participation in the development of the PV system and the period of making a business of the system. They judge that companies in the mechanical and electrical field will participate in the development of the PV system and will make a business of the system in 5 years. 4. The experts have thought that the PV system is designed not for economy but for the environment of the earth and that PV system technology in Korea is much lower than that in the advanced countries. 5. The experts hesitate to participate in the development of the PV system and to make a business of the system because they have little confidence in the economy of the PV system now and because they have thought that they will bear a great financial burden of construction cost 6. The experts judge that it is most desirable to apply the PV system to the rooftops of buildings. And they are greatly interested in the BIPV.

건물 부착형 고경량 유연성 슁글드 태양광 모듈 (Fabrication of Lightweight Flexible c-Si Shingled Photovoltaic Modules for Building-Applied Photovoltaics)

  • 김민섭;박민준;신진호;이은비;정채환
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.107-110
    • /
    • 2022
  • Lightweight and flexible photovoltaic (PV) modules are attractive for building-integrated photovoltaic (BIPV) applications because of their easy construction and applicability. In this study, we fabricated lightweight and flexible c-Si PV modules using ethylene tetrafluoroethylene (ETFE) front cover and shingled design string cells. The ETFE front cover instead of glass made the PV modules lighter in weight, and the shingled design string cells increased the flexibility. Finally, we fabricated a PV module with a conversion power of 240.08 W at an area of 1.25 m2 and weighed only 2 kg/m2. Moreover, to check the PV module's flexibility, we conducted a bending test. The difference of conversion power between the modules before and after bending shown was only 1.7 W, which showed a power reduction rate of about 0.7%.

건물일체형 Cold Facade PV 시스템의 성능 분석 (Analysis of Performance of Building Integrated PV System into Cold Facade)

  • 김현일;강기환;박경은;유권종;서승직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1104-1105
    • /
    • 2008
  • This paper presents the assesment of experimented data and estimated data for electrical and thermal performance evaluation of building integrated photovoltaic(BIPV) system of cold facade type. BIPV module is used to estimate the dependence of module temperature on irradiance, ambient temperature and indoor temperature. The module temperature of no free ventilated facade PV system is higher than cold facade PV system about 13.4$^{\circ}C$. By the results on simulation, the reduction of electrical power loss is 9.57% into cold facade according to free ventilation. The annual averaged PR of BIPV system into cold facade is about 73.1%.

  • PDF

건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구 (A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle)

  • 안영섭;송종화;김석기;이성진;윤종호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

후면 환기 조건을 통한 BIPV 모듈 특성분석 (A Study on the Thermal Effect and Performance of BIPV System acccording to The Ventilation Type of PV Module Backside)

  • 권오은;이상길;강기환;유권종;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1302-1303
    • /
    • 2011
  • Building-Integrated Photovoltaic System(BIPV) has a muti-functional to generate electrical power and be able to be exterior materials for building. When PV modules are applied as envelope materials for building, the PV modules are considered on characteristics of the thermal effect and performance of PV module to optimize BIPV system synthetically. The purpose of this study is analysis of the changes of temperature and performance on PV modules. after installing four PV modules that have different ventilation type of PV module backside. Measurement results on this experiment is that the ventilation of PV module backside can control elevated module temperature and improve the performance of PV module. So, the technology development on the ventilation of PV module is suggested introducing effective BIPV system.

  • PDF

건물일체형 반투명 태양광발전모듈의 후면 유리 종류에 따른 온도 및 발전 특성 분석 (Analysis of Temperature and Generation Characteristics of Semi-transparent Module)

  • 박경은;강기환;김현일;유권종;김준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1106-1107
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. It reports the effect of thermal characteristics of the PV module on generation performance. The study was performed by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF

건물일체형 태양광발전 시스템의 발전성능 분석 (A Study on generation characteristics of building integrated Photovoltaic system)

  • 박재완;신우철;김대곤;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.