• Title/Summary/Keyword: Building Energy Retrofits

Search Result 10, Processing Time 0.026 seconds

Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building (노후 학교건물의 창호 교체에 따른 부하분석)

  • Lee, Ye Ji;Kim, Joo Wook;Song, Doo Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

Efficiency of Energy Performance Improvement by Retrofit in existing Buildings (기존 건축물의 리트로핏에 따른 에너지 성능개선 효과 분석)

  • Kim, Dong-Hee;Moon, Hyunseok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.126-127
    • /
    • 2016
  • The Korean government has developed and strengthened energy related regulations to pursue eco-friendly buildings since 1979. However, required design standards for energy based quantitative studies focused on energy performance in existing buildings are meagered. Therefore in this study, required energy performance by design standards for energy are analyzed. And a energy performance by retrofits for insulation improvement is studied using energy simulations.

  • PDF

A Proposal of Energy Retrofitting Methods for Small-to-Medium Existing Building (중소규모 기존 건물의 에너지 개수 방법에 관한 실증연구)

  • Jeong, Hee-Gyu;Lee, Young-Jae;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.286-292
    • /
    • 2012
  • In recent years, building energy has received much attention and there are many support system to reduce building energy consumption. In addition, It is clear that encouraging to energy efficiency investments can be beneficial to our society, because of the energy supply instability and higher energy price in Korea. Nevertheless, ESCO business, represent the existing building energy retrofit business, hardly has not expanded in Korea. besides, in the case of existing building, it is more difficult to achieve the energy retrofit measures than new building, due to the existing buildings have attributes such as a long life and a lots of energy factor, etc. Therefore, for activate ESCO business and expand ESCO bussiness target to small-to-medium building, it is needed to optimization of retrofitting methods for existing small-to medium buildings in Korea. this research was to derive energy retrofit methods through the energy audit and analysis performed for a small-to-medium building located in Suwon, Korea.

  • PDF

Proposal of the Energy Retrofit in a Small Sized Office Building and its Application (기존 건물의 에너지 개수방법의 제안 및 사례연구)

  • Jeong, Hee-Gyu;Park, Jun-Won;Lee, Young-Jae;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.663-670
    • /
    • 2012
  • Recently, energy saving in building sector is of great important to meet national $CO_2$ reduction goals in Korea. In this sense, it is crucial to improve the energy performance for existing building. The energy efficiency investments, ESCO business, can be beneficial to expand the chance of energy retrofit for existing building. However, ESCO business hardly expand in Korea because it has many limitations in guarantee for energy saving. Also, it is more difficult to apply the energy retrofit measures in existing building than new building. Therefore, the retrofitting methods for existing small-and medium-sized buildings should be improved to initiate ESCO business and expand it in Korea. In this study, the energy retrofit methods for small sized office building were suggested and the case study for a small sized office building located in Suwon was accomplished.

AUTOMATIC AS-IS BIM EXTRACTION FOR SUSTAINABLE SIMULATION OF BUILT ENVIRONMENTS

  • Chao Wang;Yong K. Cho
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.47-51
    • /
    • 2013
  • Existing buildings now represent the greatest opportunity to improve building energy efficiency. Building performance analysis is becoming increasingly important because decision makers can have a better visualization of their building's performance and quickly make the solution for improving building energy efficiency and reducing environmental impacts. Nowadays, building information models (BIMs) have been widely created during the design phase of new buildings, and it can be easily imported to third party software to conduct various analyses. However, a BIM is not always available for all existing buildings. Even if a BIM is available during the design and construction phases, it is very challenging to keep updating it while a building is aged. A manual process to create or update a BIM is very time consuming and labor intensive. A laser scanning technology has been a popular tool to create as-is BIM. However it still needs labor-intensive manual processes to create a BIM out of point clouds. This paper introduces automatic as-is simplified BIM creation from point clouds for energy simulations. A framework of decision support system that can assist decision makers on retrofits for existing buildings is introduced as well. A case study on a residential house was tested in this study to validate the proposed framework, and the technical feasibility of the developed system was positively demonstrated.

  • PDF

A Case Study on Energy Performance Analysis of Retrofitted Building Using Inverse Model Toolkit (Inverse Model Toolkit을 이용한 리모델링 건축물의 에너지 성능평가 사례)

  • Kwon, Kyung-Woo;Lee, Suk-Joo;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.394-400
    • /
    • 2014
  • Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.

Continuous Commissioning Process and Application (Continuous Commissioning의 절차와 적용)

  • Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.77-84
    • /
    • 2010
  • This paper presents the continuous commissioning process, information on the case study facility, improved system operation, and building energy consumption measures before and after continuous commissioning implementation. Continuous commissioning is an ongoing process to resolve operating problems, improve comfort, optimize energy use and identify retrofits for existing commercial and institutional buildings and central plant facilities. Continuous commissioning process consists of two phases. The first phase is the project development phase and the second phase implements and verifies project performance. Results of a case study show that continuous commissioning implementation can reduce energy costs. The energy reports show the electricity savings of 22% and gas savings of 47% on an average.

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.