• Title/Summary/Keyword: Buckling behavior

Search Result 994, Processing Time 0.026 seconds

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.723-731
    • /
    • 2022
  • Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

Buckling Analysis of Axisymmetric Shells by Incremental Finite Element Mothod (증분형(增分形) 유한요소법(有限要素法)에 의한 축대칭(軸對稱) Shell구조(構造)의 좌굴해석(挫屈解析))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • This paper deals whth the buckling as well as postbuckling analysis of axisymmertric shells taking the initial deflection effects into account. Incremental equilibrium equations, based on the principle of virtual work, were derived by the finite element method, the successive step-by-step Newton-Raphson iterative technique was adopted. To define the transition pattern of postbuckling behavior from the prebuckling state more accurately, a simple solution method was developed, i.e. the critical load was calculated by the load extrapolation method with the determinant of tangent stiffness matrix and the equilibrium configuration in the immediate postbuckling stage was obtained by perturbation scheme and eigenvalue analysis. Degenerated isoparametric shell elements were used to analyse the axisymmetric shell of revolution. And by the method developed in this paper, the computer program applicable to the nonlinear analysis of both thin and moderately thick shells was constructed. To verify the capabilities and accuracies of the present solution method, the computed results were compared with the results of analytical solutions. These results coincided fairly well in both the small deflection and large deflection ranges. Various numerical analyses were done to show the effect of initial deflection and shape of shells on buckling load and postbuckling behavior. Futhermore, corrected directions of applied loads at every increment steps were used to determine the actual effects of large deflection in non-conservative load systems such as hydrostatic pressure load. The following conclusions can be obtained. (1) The method described in this paper was found to be both economic and effective in calculating buckling load and postbuckling behavior of shell structure. (2) Buckling and postbuckling behavior of spherical caps is critically dependent upon their geometric configuration, i.e. the shape of spherical cap and quantities of the initial deflection. (3) In the analysis of large deflection problems of shells by the incremental method, corrections of the applied load directions are needed at every incremental step to compensate the follower force effects.

  • PDF

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

An Experimental Study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors II - Effect of Type of Connection Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 II - 연결재 종류의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.217-225
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector plate, single channel, double channel are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. in order to figure out how the connectors' type affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result from the experiments show that the buckling loads 4.2% decreases in double channel connectors and 36.6% decreases in single channel connectors than plate connectors.

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

A Study on the Nonlinear Buckling Behavior of Thin-Walled Sections (박판단면의 비선형 좌굴거동에 관한 해석적연구)

  • Jin, Chang Sun;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.407-421
    • /
    • 1998
  • The purpose of this paper is to provide and verify an analytical method, based on the spline finite strip method, which can be used to investigate the buckling mode and stress of thin-walled steel sections. Geometric imperfection and initial stress of plates and plate assemblies, which are resulted from various preloadings and may cause prebuckling deformations before buckling, are included in the analysis. Material nonlinearity and residual stress are also considered. It can be applied to sections with simple or non-simple boundary conditions and arbitrary loading. The method has been applied to investigate the buckling behavior of plates and plate assemblies which are subjected to compression with initial imperfections and residual stresses.

  • PDF

Inelastic Buckling Behavior of I-Beam with Unequal End Moment (불균등 단부 모멘트를 받는 I형강의 비탄성 좌굴거동에 관한 연구)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.257-265
    • /
    • 2004
  • The aim of this study is to investigate the inelastic buckling behavior of the beams under moment gradient using a line-type finite element method. The method is incorporated the non-uniform yielding of the cross-section caused by the presence of residual stress and accepted model of residual stress so called 'simplified' and 'polynomial' pattern is adopted in this study. The inelastic lateral-torsional buckling results obtained in this study is compared with the buckling results obtained from the design method based on the allowable stress method given in Korean Steel Designers Manual (KSDM 1995). This study have found that the design method in KSDM (1995) is conservative without and with intermediate bracing applied at the mid span of the beam, and there is some scope for improving the provisions of KSDM (1995)