References
- Abbache, A., Youzera, H., Abualnour, M., Houari, M.S., Meftah, S. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80(2), 201-210. https://doi.org/10.12989/sem.2021.80.2.201.
- Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Archive Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
- Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Akbas, S. D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
- Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Al-Basyouni, K.S. and Mahmoud, S.R. (2021), "Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder", Struct. Eng. Mech., 79(5), 593-599. https://doi.org/10.12989/sem.2021.79.5.593.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel and Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.
- Barati, M.R., Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
- Belarbi, M.O., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021a), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
- Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021b), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01452-1.
- Ben-Oumrane S., Tounsi, A., Ismail, M., Mohamed, B.B., Mustapha, M. and Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comp. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001.
- Benaoum, A., Youzera, H., Abualnour, M., Houari, M.S.A., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method", Struct. Eng. Mech., 80(6), 727. https://doi.org/10.12989/sem.2021.80.6.727.
- Benatta M., Mechab I., Tounsi A. And Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020.
- Bui, T.Q., Khosravifard, .A., Zhang, .C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly mesh free radial point interpolation method", Eng. Struct., 47(0), 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
- David James Lloyd. (2005), "Functionally graded aluminum alloy sheet", U.S. Patent Application No. 10/696,877. https://patents.google.com/patent/US20050092403A1/en.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. And Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos Struct., 88(4), 636- 642. https://doi.org/10.1016/j.compstruct.2008.06.006.
- Eslami, M.R., Eslami, J. and Jacobs, M. (2018). Buckling and Postbuckling of Beams, Plates, and Shells, Switzerland: Springer International Publishing.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005.
- Fang, W., Yu, T, Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021b), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Institution Eng. (India) Series C., 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
- Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica., 1-16. https://doi.org/10.1007/s10338-021-00295-z.
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021c), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Archives Comput. Methods Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0.
- Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math Model, 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
- Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means ofclassical and advanced theories", Mech Adv. Mater. Struct., 17(8), 622-35. https://doi.org/10.1080/15376494.2010.518930.
- Gupta, R.K.., Babu, G.J., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem Anal Des., 45(10), 624-631. https://doi.org/10.1016/j.finel.2009.04.001.
- Huang, Y.Q. and Li, Q.S. (2004), "Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method", Comput. Methods Appl. Mech. Eng., 193(33-35), 3471-392. https://doi.org/10.1016/j.cma.2003.12.039.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2021), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 37(4)., 3569-3589. https://doi.org/10.1007/s00366-020-01018-7.
- Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405 16.
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009b), "Flexural vibration and elastic buckling ofa cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175.
- Ke, LL., Yang, J. and Kitipornchai, S. (2009a), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003.
- Khorshidi, M.A., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110, 1601-1669. https://doi.org/10.1016/j.ijmecsci.2016.03.006.
- Kiani, Y. and Eslami, M.R. (2013), "Thermomechanical buckling oftemperature-dependent FGM beams", Lat. Am. J. Solids Struct., 10(2), 223-246. http://dx.doi.org/10.1590/S1679-78252013000200001.
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random Vibration of the Functionally Graded Laminates in Thermal Environments", Comput. Method Appl. M., 195, 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
- Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
- Kou, M., Bi, J., Yuan, B. and Wang, Y. (2020), "Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions", Struct. Eng. Mech., 75(3), 339-356. https://doi.org/10.12989/sem.2020.75.3.339.
- Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete., 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.
- Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011.
- Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
- Li, C., Shen, H.S. and Wang, H. (2019), "Thermal post-buckling of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Mech. Sci., 152, 289-297. https://doi.org/10.1016/j.ijmecsci.2019.01.002.
- Li, S.R. and Batra, R.C. (2012), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J.P. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-306. https://doi.org/10.12989/scs.2020.35.2.295.
- Ma, L.S. and Lee, D.W. (2011), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an inplane thermal loading", Eur. J. Mech. A-Solid, 31(1), 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016.
- Madenci, E. and Ozkili, Y.P. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
- Meksi, A., Belakhdar, K., Bouguenina, O. and Tounsi, A. (2018), "Effect of parabolic-concave thickness variation on the mechanical buckling resistance of simply supported FGM lates", Jordan J. Civil Eng., 12(2). https://jjce.just.edu.jo/issues/paper.php?p=4245.pdf.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotubereinforced beam under axial load", J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083.
- Nguyen, TK., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
- Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mats., 3(3) 398-411. https://doi.org/10.1177/002199836900300304.
- Parvin, N. and Yusefi, A. (2017), U.S. Patent Application, No. 15/456,501. https://patents.google.com/patent/US20170368607A1/en.
- Pei, Y.L., Geng, P.S. and Li, L.X. (2018), "A modified higherorder theory for FG beams", Eur. J. Mech. A/Solids, 72, 186-197. https://doi.org/10.1016/j.euromechsol.2018.05.008.
- Pham, Q.H., Pham, T.D., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
- Rahimi, G.H., Gazor, M.S., Hemmatnezhad, M. and Toorani, H. (2013), "On the post buckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012.07.034.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
- Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5.
- Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B. Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077.
- Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A.R. and Yildirim, A. H.M.E.T. (2012), "Asymptotic investigation of buckled beam nonlinear vibration", Iran. J. Sci. Technol., Transactions Mech. Eng., 36(M2), 107-116.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6.
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials., 13(7), 1707. https://doi.org/10.3390/ma13071707
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model, 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
- Shen, H.S., Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020.
- Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H. (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
- Timoshenko, S.P.X. (1922), "On the transverse vibrations of bars of uniform cross-section", Lond. Edinb. Dubl. Phil. Mag., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.
- Ton-That, H.L. (2021b), "A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates", Facta Universitatis, Series: Mech. Eng., 19(2), 285-305. https://doi.org/10.22190/FUME200629040T.
- Ton, L.H.T. (2021a), "A modified shear deformation theory associated with the four-node quadrilateral element for bending and free vibration analyses of plates", Int. J. Eng. Appl. Phys., 1(3), 235-241. https://orcid.org/0000-0002-5195-1856.
- Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B. Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
- Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica., 49, 155-168. https://doi.org/10.1007/s11012-013-9780-1.
- Yaghoobi, H. and Torabi, M. (2013), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Model, 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037.
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
- Youzera, H. and Meftah, S.A. (2017b), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.
- Youzera, H., Meftah, S.A. and Daya, E.M. (2017a), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 054503. https://doi.org/10.1115/1.4036914.
- Youzera, H., Meftah, S.A., Challamel, N. and Tounsi A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B. Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
- Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.
- Yu, T., Hu, H., Zhang, J.H. and Bui, T.Q. (2019b), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
- Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019a), "A novel size dependent quasi-3D isogeometric beam model for two directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
- Yuan, Y., Zhao, K., Zhao, Y. And Kiani, K. (2020), "Nonlocalintegro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551.