• Title/Summary/Keyword: Buckling analysis

Search Result 1,755, Processing Time 0.023 seconds

Post-buckling responses of a laminated composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.733-743
    • /
    • 2018
  • This paper presents post-buckling responses of a simply supported laminated composite beam subjected to a non-follower axially compression loads. In the nonlinear kinematic model of the laminated beam, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The distinctive feature of this study is post-buckling analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. The effects of the fibber orientation angles and the stacking sequence of laminates on the post-buckling deflections, configurations and stresses of the composite laminated beam are illustrated and discussed in the numerical results. Numerical results show that the above-mentioned effects play a very important role on the post-buckling responses of the laminated composite beams.

Analysis of Elasto-Plastic Buckling Characteristics of Plates (평면판의 탄소성 좌굴 특성 해석)

  • 김문겸;김소운;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.16-21
    • /
    • 1990
  • Recently, the finite element method has been sucessfully extended to treat the rather couplet phenomena such as nonlinear buckling problems which are of considerable practical interest. In this study, a finite element program to evaluate the elasto-plastic buckling stress is developed. The Stowell's deformation theory for the plastic buckling of flat plates, which is in good agreement with experimental results, is used to evaluate bending stiffness matrix. A bifurcation analysis is performed to compute the elasto-plastic buckling stress. The subspace iteration method is employed to find the eigenvalues. The results are compared with corresponding enact solutions to the governing equations presented by Stowell and also with experimental data due to Pride. The developed program Is applied to obtain elastic and elasto-plastic buckling stresses for various loafing cases. The effect of different plate aspect ratio is also investigated.

  • PDF

Lateral-torsional buckling analysis of thin-walled composite beam (박벽 복합재료 보의 횡-비틀림 좌굴 해석)

  • 김영빈;이재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Buckling analysis of nanocomposite plates coated by magnetostrictive layer

  • Tabbakh, Moein;Nasihatgozar, Mohsen
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.743-751
    • /
    • 2018
  • In this project, buckling response of polymeric plates reinforced with carbon nanotubes (CNTs) and coated by magnetostrictive layer was studied. The equivalent nanocomposite properties are determined using Mori-Tanak model considering agglomeration effects. The structure is simulated with first order shear deformation theory (FSDT). Employing strains-displacements, stress-strain, the energy equations of the structure are obtained. Using Hamilton's principal, the governing equations are derived considering the coupling of mechanical displacements and magnetic field. Using Navier method, the buckling load of the sandwich structure is obtained. The influences of volume percent and agglomeration of CNTs, geometrical parameters and magnetic field on the buckling load are investigated. Results show that with increasing volume percent of CNTs, the buckling load increases. In addition, applying magnetic field, increases the frequency of the sandwich structure.

Dynamic Characteristics Analysis of Filament-wound Composite Towers for Large Scale Offshore Wind-Turbine (대형 해상풍력발전용 필라멘트 와인딩 복합재 타워의 동적 특성에 관한 연구)

  • Han, Jeong-Young;Hong, Cheol-Hyun;Jeong, Jae-Hun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • The purpose of this study is to investigate the buckling load of filament-wound composite towers for large scale wind-turbine using finite element method(FEM). To define material properties, we used both the effective property method and the stacking properties method. The effective properties method is to assume that composite consists of one ply. The stacking properties method is to assume that composite consists of some stacked plies. First, linear buckling analysis of the tower, filament-wounded with angles of [${\pm}30$] was carried out by two methods for composite material properties, the stacking method and the effective method. and FE analysis was performed for the composite towers according to filament winding angles of [${\pm}30$], [${\pm}45$], [${\pm}60$]. FE analysis results using the stacking properties of the composite were in good agreement with the results by the effective properties. The difference between FEM results by material properties methods was approximately 0~2.3% in buckling Analysis and approximately 0~0.6% in modal analysis. And above the angle of [${\pm}60$], there was a little change of buckling load.

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.

Buckling Behavior of Corrugated Steel Pipe under External Uniform Pressure (등분포하중을 받는 파형강관의 좌굴거동)

  • Ahn, Woo Cheul;Han, Taek Hee;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • There are two basic concepts about concerning the buckling analysis of a buried pipe. One concept considers the soil around the pipe asn elastic continuum mediaum. The other concept holds that the pipe is sup ported by an elastic spring, which replaces the effects of the surrounding soil (the Winkler model). Theise buckling analysis is based on plane analysis, without considering the corrugation effect and the length effect. This paper thus presents a parametric study using the Finite Element Method (FEM) for the Winker model and proposes a buckling strength formula after examining a 3D analysis considering the corrugation effect and the length effect, thatwhichhelp in estimating the critical buckling strength of such CSP

Buckling Analysis of Simple Supported Plate Stiffened with Laminated Composite Panel (복합적층 패널로 보강된 단순지지 판의 좌굴해석)

  • Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.621-628
    • /
    • 2004
  • This paper introduces a new theory, that in a stiffened plate, a steel stiffener could be substituted a composite material in order to prevent from buckling. Changing a steel stiffener into a composite material would not only preclude welding, but could also prevent damage to the material due to fatigue and corrosion.A composite material is assumed to adhere to a steel plate, and is never separated from the plate until the steel plate reaches buckling.Such plate has variable shapes, with different lengths and widths, and also shows an anisotropic material property. LUSAS, a commercial finite element analysis package, was used in the buckling analysis.This paper investigated buckling behavior in anisotropic composite plates with variable parameters.

Buckling Analysis of Rectangular Lattice Dome According to Rise-Ratio -Evaluate Rigidity of Roof Material By Effective Width of Frame (라이즈비에 따른 사각형 격자 돔의 좌굴해석 -지붕재의 강성을 프레임의 유효폭으로 평가)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.69-75
    • /
    • 2003
  • In case of rectangular lattice dome which shearing rigidity is very small, it has a concern to drop Buckling strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is one with roof material. In a case like this, shearing rigidity of roof material increases buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. In case of analysis is achieved considering roof material that adheres to lattice of dame, there is method that considers the rigidity that use effective width frame as method to evaluate rigidity of roof material. therefore, this study is aimed at deciding effective width of roof material united with rectangular lattice dome to evaluate rigidity of roof material by effective width of frame and investigating how much does rigidity of roof material united with lattice of dome increase buckling-strength of the whole of structure according to rise-ratio. Conditions of loading are vertical-type-uniform loading. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.

  • PDF

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.