• Title/Summary/Keyword: Buck

Search Result 897, Processing Time 0.026 seconds

Zero Voltage and Zero Current Switching Buck Converter Using a Single Swi (하나의 스위치를 사용한 영전압-전류 스위칭 벅 컨버터)

  • Kim, Ki-Jun;Lee, Tai-Woong;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1866-1868
    • /
    • 1998
  • This paper propose zero voltage and zero current switching buck converter using a single switch. This converter is electrically equivalent to two basic buck converter in a cascade. Proposed converter is switching at high frequency and operate in high efficiency at wide load range due to resonant switching.

  • PDF

A New BUCK ZC-ZVS DC-DC Converter (새로운 강압형 영전류-영전압 컨버터)

  • Lee, Yo-Seob;Won, Young-Jin;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2097-2099
    • /
    • 1998
  • This paper proposed an improvement in the Buck ZC-ZVS converter Presented in [1]. This is achieved by change the auxiliary switch position, which reduces its rating power. By employing saturable inductor, the maximum voltage stress across the main switch becomes constant and independent of the load current. Operating principle of Buck proposed topolo described and confirmed by simulation results.

  • PDF

Photovoltaic Power System using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압형 초퍼를 이용한 태양광발전시스템)

  • Kim, Young-Cheal;Suh, Ki-Young;Woo, Jung-In;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2115-2117
    • /
    • 1998
  • The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation. solar cell temperature. The PWM power inverter is realized by driving a inverter constructed with a high frequency buck-boost chopper in the discontinuous conduction mode(DCM). This paper present a buck-boost PWM inverter and its application for residential system.

  • PDF

High Frequency Switching and Stability of DC-DC Converters (DC-DC 콘버어터의 고주파화와 안정성)

  • Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.824-827
    • /
    • 1987
  • The miniturization of a DC-DC converter circuit in connection with the stability is investigated in this paper. As both the capacitance of the smoothing capacitor and the inductance of the reactor are reduced by raising the switching frequency, it is known that the stability of the buck converter declines with the switching frequency but the buck-boost converter has a nearly uniform stability. Furthermore, that in the frequency region above a certain switching frequency the buck-boost converter is suitable for the miniturization of circuit is cleared.

  • PDF

Modeling and Analysis of Buck LED Driver with Slope Compensation (Slope 보상을 가진 벅 LED 구동기의 모델링 및 해석)

  • Kim, Marn-Go;Jung, Young-Seok;Kim, Nam-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.98-99
    • /
    • 2017
  • A discrete time domain modeling for the current-mode-controlled buck LED driver is presented in this paper. Based on the modeling result, a root locus analysis for the buck LED driver with slope compensation is done to derive the stability boundaries of feedback gains.

  • PDF

A PWM Buck AC-AC Converter with Instantaneous Compensation for Voltage Sag and Surge (전압 Sag와 Surge에 대한 순시보상 기능을 갖는 PWM Buck AC-AC 컨버터)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.197-200
    • /
    • 2001
  • This paper presents a PWM buck AC-AC converter with instantaneous compensation for input voltage sag and surge. The presented converter use commercial IGBT modules and its output voltage is regulated so as to remain constant AC output voltage. The feedforward control technique is also proposed to establish instantaneous duty level change whereby stable output voltage will be retained. This paper show the characteristics and control algorithm of the converter through various PSPICE simulations.

  • PDF

Comparison of efficiency according to Non-inverting Buck-Boost Converter Modulation (단상 비 반전 벅-부스트 컨버터 모듈레이션 방법에 따른 효율 비교)

  • Yoon, Dongkwan;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.203-204
    • /
    • 2018
  • Conventional buck-boost converter has the disadvantage that the output voltage is inverted. The single phase non-inverting buck-boost converter(SPNIBBC) used four swithes has H-bridge type Circuit. The output voltage is not inverted. The SPNIBBC can be controlled by the single carrier method and the dual carrier method according to the modulation method. In this paper, we have fabricated the converter and compared the efficiency according to the modulation method.

  • PDF

A Zero-Current-Transition Synchronous Buck Converter Using Auxiliary Circuit with Soft-Switching (소프트 스위칭 방식의 보조 회로를 활용한 영전류 천이형 싱크로너스 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2013
  • This paper proposes a zero-current-transition(ZCT) synchronous buck converter using auxiliary circuit with soft-switching for light weight and high efficiency. In this scheme, an auxiliary circuit is added to the conventional synchronous rectifier buck converter and used to achieve soft-switching condition for both the main switch and synchronous switch. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Thus, the proposed converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200KHz, 20 W prototype converter.

Soft Switching High Power Factor Buck Converter (Soft Switching방식 고역률 강압형 컨버터)

  • 구헌회;조기연
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF