• 제목/요약/키워드: Brain Technology

검색결과 1,283건 처리시간 0.025초

CT 검사에서 유리선량계를 이용한 수정체의 비스무트 차폐 효과 (Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography)

  • 정미영;권대철;권수일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권3호
    • /
    • pp.307-312
    • /
    • 2009
  • CT 검사에서 수정체 차폐용 비스무트(bismuth)를 사용하여 수정체 선량의 감소효과를 유리선량계로 측정하여 비스무트 차폐효과 및 영상을 평가하였다. 안구 및 두부 CT 검사에서 차폐용 비스무트를 사용하여 수정체 선량의 감소와 차폐 효과를 평가하기 위해 인체모형 팬텀으로 유리선량계를 이용하여 수정체 선량을 평가하였다. 유리선량계를 이용하여 비스무트를 사용하기 전의 평균 선량은 21.54 mGy이었고, 사용 후의 선량은 10.46 mGy로 51.3%의 선량 감소효과가 있다. 차폐용 비스무트를 사용한 안구 64 MDCT 촬영에서 선량감소 효과가 있어 수정체를 포함한 안구 CT 스캔에서는 비스무트를 사용하여 검사하도록 권고한다.

  • PDF

Immune Responses Induced by HSP60 DNA Vaccine against Toxoplasma gondii Infection in Kunming Mice

  • Li, Zhong-Yuan;Lu, Jing;Zhang, Nian-Zhang;Chen, Jia;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • 제56권3호
    • /
    • pp.237-245
    • /
    • 2018
  • Toxoplasma gondii can infect all the vertebrates including human, and leads to serious toxoplasmosis and considerable veterinary problems. T. gondii heat shock protein 60 (HSP60) is associated with the activation of antigen presenting cells by inducing initial immune responses and releasing inflammatory cytokines. It might be a potential DNA vaccine candidate for this parasite. A pVAX-HSP60 DNA vaccine was constructed and immune responses was evaluated in Kunming mice in this study. Our data indicated that the innate and adaptive immune responses was elicited by successive immunizations with pVAX-HSP60 DNA, showing apparent increases of CD3e+CD4+ and CD3e+CD8a+ T cells in spleen tissues of the HSP60 DNA-immunized mice ($24.70{\pm}1.23%$ and $10.90{\pm}0.89%$, P<0.05) and higher levels of specific antibodies in sera. Furthermore, the survival period of the immunized mice ($10.53{\pm}4.78day$) were significantly prolonged during the acute T. gondii infection. Decrease of brain cysts was significant in the experimental group during the chronic infection (P<0.01). Taken together, TgHSP60 DNA can be as a vaccine candidate to prevent the acute and chronic T. gondii infections.

Haplotype Analysis and Single Nucleotide Polymorphism Frequency of Organic Cation Transporter Gene (OCT1 and 2) in Korean Subjects

  • Kim, Se-Mi;Lee, Sang-No;Yoon, Hwa;Kang, Hyun-Ah;Cho, Hea-Young;Lee, Il-Kwon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권5호
    • /
    • pp.345-351
    • /
    • 2009
  • Organic cation transporters (OCTs) are important for absorption, elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. This gene is located in a cluster on chromosome 6 and OCTs are in major organs such as intestine, liver, kidney, brain and placenta. Therefore, expression levels and function of OCTs directly affect plasma levels and intracellular concentrations of drugs and thereby determine therapeutic response. The aim of this study was to investigate the frequency of the SNPs on OCT1 (C181T and C1022T) and OCT2 (G808T) to analyze haplotype frequency in healthy Korean population. Human subjects have been genotyped for OCT1 (C181T for 195 subjects and C1022T for 825 subjects), using polymerase chain reaction-based diagnostic tests (RFLP). And for OCT2 (G808T), a total of 861 subjects have been genotyped, using pyrosequencing method. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). OCT1 C181T genotyping showed 100% homozygous wild-type (C/C). OCT1 C1022T genotyping showed wild-type (C/C), heterozygous (C/T) and homozygous mutant-type (T/T) and each accounted for 72.1, 24.5 and 3.4%, respectively. OCT2 G808T genotyping results also showed homozygous wild-type (G/G), heterozygous (G/T) and homozygous mutant-type (T/T) and each took 81.8, 17.9 and 0.3%, respectively. Based on these genotype data, haplotype analysis between OCT1 C181T and OCT1 C1022T has proceeded. The result has revealed that linkage disequilibrium between alleles is not obvious (P=0.0122).

대학도서관의 연구지원서비스에 관한 연구 (A Study on the Research Support Service of College Libraries)

  • 남영준;김희선
    • 정보관리연구
    • /
    • 제43권3호
    • /
    • pp.1-21
    • /
    • 2012
  • 이 연구에서는 대학도서관의 연구지원서비스를 정의하고, 국내외 주요 대학도서관에서 제공하는 연구지원서비스를 비교 분석하였다. 분석 결과, 국내 대학도서관은 일반적으로 온라인상에서 도서관 서비스제공 빈도가 상대적으로 저조하였다. 또한 상대적으로 국외대학도서관에서 제공하는 연구지원 전문서비스보다는 서지교육과 원문제공서비스, 상호대차서비스 등과 같은 일반적인 도서관 서비스만을 제공하였다. 또한 연구윤리 관련 정보서비스가 상대적으로 부족하였다. 그리고 연구단계별 연구지원서비스는 자료수집단계에 집중된 경향이 있으며, 그 외 연구계획단계와 논문작성단계의 서비스는 미흡한 것으로 나타났다. 미국 대학도서관은 대학 소속 연구자와 학자 간의 커뮤니케이션을 위한 공간을 도서관 홈페이지를 통해 제공하고 있었다.

선조체에서 3-nitropropionic acid 투여 후 calponin 3의 발현 연구 (Expression of Calponin 3 in the Striatum Following 3-Nitropropionic Acid-induced Neurotoxicity)

  • 최윤식
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.125-130
    • /
    • 2013
  • Calponin 3는 F-actin과 결합하는 단백질로 신경계의 가소성과 시냅스 활성을 조절하는데 중요한 역할을 하는 것으로 알려져 있다. 평활근과 심장근에 발현되는 calponin 1과 calponin 2와는 다르게 calponin 3는 뇌 조직에 많이 발현되어 있는 것으로 보고되고 있다. 본 연구는 마우스에서 3-nitropropionic acid를 투여하여 선조체에 비가역적 신경 손상을 주었을 때 calponin 3의 발현 양상을 알아보기 위하여 진행되었다. 본 연구 결과 3-nitropropionic acid를 마우스에 투여하였을 때 선조체에서 신경조직의 괴사가 일어남을 관찰하였으며 calponin 3는 약물 투여 후 1.5일부터 서서히 발현되는 것을 확인하였다. 특히, calponin 3는 신경조직의 괴사가 일어나는 부위의 주변부에서 발현되는 것을 확인하였으며 형광 이중면역 염색법으로 확인한 결과 GFAP를 발현하는 별아교세포에서 발현됨을 최초로 밝혔다. 따라서, calponin 3가 3-nitropropionic acid의 독성에 저항성을 나타내는 부위에서 별아교세포에서만 특이적으로 발현되는 것으로 보아 calponin 3는 별아교세포에 의한 신경아교증에 중요한 역할을 하는 것으로 추측된다.

대학도서관의 포털서비스에 대한 원격대학생의 인식도 연구 (A Research on the Awareness of Cyber University Students on the Digital Library Portal Service)

  • 남영준;최성은
    • 정보관리연구
    • /
    • 제42권3호
    • /
    • pp.27-54
    • /
    • 2011
  • 이 연구는 원격대학생 집단을 대상으로 디지털도서관의 포털서비스에 대한 인식도를 조사하였다. 원격대학생들의 특성을 파악하고자 인구통계학적 특성과 도서관 이용행태를 조사하였다. 또한 이용자 특성에 따른 도서관 포털서비스 인식도를 다음과 같이 분석하였다. 원격대학생이 가장 필요한 도서관 포털서비스는 간략/상세검색서비스이며, 동시에 가장 높은 사용률을 보였다. 연계서비스에 대한 원격 학생들의 만족도가 가장 높았다. 응답자의 연령, 직업에 따른 일부 도서관 포털서비스 인식도에서 통계적으로 유의한 결과를 발견하였다. 이상의 분석결과를 토대로 원격대학생들의 도서관 포털에 대한 이용률을 높이기 위한 방안으로 도서관 서비스에 대한 적극적인 홍보, 도서관이용자교육의 강화를 제안하였다.

Optimization of a microarray for fission yeast

  • Kim, Dong-Uk;Lee, Minho;Han, Sangjo;Nam, Miyoung;Lee, Sol;Lee, Jaewoong;Woo, Jihye;Kim, Dongsup;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.28.1-28.9
    • /
    • 2019
  • Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up-and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 ㎛, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 ㎛, 48K) could represent ~10,000 up-/ down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.

Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng

  • Kim, Young Soo;Kotnala, Balaraju;Kim, Young Ho;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.453-461
    • /
    • 2016
  • Background: This study aims to describe the characterization of Paenibacillus polymyxa GBR-1 (GBR-1) with respect to its positive and negative effects on plants. Methods: The morphological characteristics of GBR-1 were identified with microscopy, and subjected to Biolog analysis for identification. Bacterial population and media optimization were determined by a growth curve. The potential for GBR-1 as a growth promoting agent, to have antagonistic activity, and to have hydrolytic activity at different temperatures was assessed. The coinoculation of GBR-1 with other microorganisms and its pathogenicity on various stored plants, including ginseng, were assessed. Results: Colony morphology, endospore-bearing cells, and cell division of GBR-1 were identified by microscopy; identification was performed by utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME). GBR-1 showed the strongest antagonistic activity against fungal and bacterial pathogens. GBR-1 cell numbers were relatively higher when the cells were cultured in brain heart infusion (BHI) medium when compared with other media. Furthermore, the starch-hydrolytic activity was influenced by GBR-1 at higher temperature compared to low temperatures. GBR-1 was pathogenic to some of the storage plants. Coinoculation of GBR-1 with other pathogens causes differences in rotting on ginseng roots. A significant growth promotion was observed in tobacco seedlings treated with GBR-1 suspensions under in vitro conditions, suggesting that its volatile organic compounds (VOCs) might play a role in growth promotion. Conclusion: The results of this study indicate that GBR-1 has both positive and negative effects on ginseng root and other stored plants as a potential biocontrol agent and eliciting in vitro growth promotion.

Effect of Body Mass Index on Global DNA Methylation in Healthy Korean Women

  • Na, Yeon Kyung;Hong, Hae Sook;Lee, Duk Hee;Lee, Won Kee;Kim, Dong Sun
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.467-472
    • /
    • 2014
  • Obesity is known to be strongly associated with cardiovascular disease and cancer, the leading causes of mortality worldwide, and develops owing to interactions between genes and the environment. DNA methylation can act as a downstream effector of environmental signals, and analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Repetitive element DNA methylation has been shown to be associated with prominent obesity-related chronic diseases, but little is known about its relationship with weight status. In this study, we quantified the methylation of Alu elements in the peripheral blood DNA of 244 healthy women with a range of body mass indexes (BMIs) using pyrosequencing technology. Among the study participants, certain clinical laboratory parameters, including hemoglobin, serum glutamic oxaloacetic transaminase, serum glutamic- pyruvic transaminase, total cholesterol, and triglyceride levels were found to be strongly associated with BMI. Moreover, a U-shaped association between BMI and Alu methylation was observed, with the lowest methylation levels occurring at BMIs of between 23 and $30kg/m^2$. However, there was no significant association between Alu methylation and age, smoking status, or alcohol consumption. Overall, we identified a differential influence of BMI on global DNA methylation in healthy Korean women, indicating that BMI-related changes in Alu methylation might play a complex role in the etiology and pathogenesis of obesity. Further studies are required to elucidate the mechanisms underlying this relationship.

DEPRESSION: CELLULAR AND PHYSIOLOGICAL CONSEQUENCES OF STRESS (ANTIDEPRESSANT EFFECT OF SEROTONIN N-ACETYLTRANSFERASE INHIBITOR)

  • Kim Kyong-Tai
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2001년도 International Symposium on Food,Nutrition and Health for 21st Century
    • /
    • pp.22-37
    • /
    • 2001
  • Melatonin is secreted during the hours of darkness and is thought to influence the circadian and seasonal timing of a variety of physiological processes. Serotonin N-acetyltransferase (AA-NAT) which is found to be expressed in pineal gland, retina, and various tissues, catalyses the conversion of serotonin to N-acetylserotonin and is known as the rate-limiting enzyme in the biosynthetic pathway of melatonin. The compounds that modulate the activity of AA-NAT can be used to treat serotonin-and melatonin-related diseases such as insomnia, depression and seasonal affective disorders (SAD). Several assay methods have been developed by which to measure AA-NAT activity. We have also developed a simple, rapid and sensitive AA-NAT assay method that takes advantage of differences in the organic solubilities between acetyl CoA and N-acetyltryptamine. We screened modulators of AA-NAT activity from the water extracts of the medicinal plants. We found MNP1005 which strongly inhibited the activity of AA-NAT ($IC_{50}$=2.2$\mu$M). Enzyme inhibitory kinetic studies revealed that MNP1005 exhibited a noncompetitive inhibition toward tryptamine. The antidepressant effect of MNP1005 was investigated on behavioral despair test so called forced swimming test (FST). MNP1005 significantly increased swimming behavior by reducing immobility with treatment of 10 mg/kg when compared to the vehicle-treated control group (P < 0.05). This suggests that MNP1005 possesses antidepressant activity. The influence of chronic MNP1005 treatment on the expression of brain-derived neurotrophic factor (BDNF) was examined by in situ hybridization and Northern blot. Chronic treatment of MNP1005 blocked the downregulation of BDNF mRNA in the frontal cortex and other cortex regions in response to restraint stress.

  • PDF