• Title/Summary/Keyword: Brain Information Processing

Search Result 233, Processing Time 0.019 seconds

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

A review on Cognitive Information Processing and Emotional Changes of Athletes by Overtraining: P300, EEG Cerebral Hemispheric Asymmetry (과훈련에 따른 선수의 인지정보처리와 정서변화에 대한 문헌 고찰: P300, EEG 대뇌반구비대칭 연구를 중심으로)

  • Ha, Tae-Ho;Kim, Jin-Gu;Kim, Sung-Woon
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.501-509
    • /
    • 2017
  • The purpose of this study was to review the effects of the physical fatigue induced by overtraining on cognitive information processing and emotional change of athletes by neurophysiologic study. And to provide basic data for the athletes and coaches in the sports field to improve understanding of the overtraining symptoms from the brain physiological point of view. We reviewed the domestic and international academic materials and research reports published in the last 20 years using electronic databases and examined the literature that is consistent with the purpose of this study among the retrieved documents. Based on the reviewed literature, we examined the cognitive information processing and emotional change of the athlete according to the training, and overtraining can accumulate the fatigue of the body, which can cause severe side effects in terms of cognitive ability and emotional ability of athletes as well as deterioration of performance. The study using P300 and EEG cerebral hemispheric asymmetry difference indices also confirmed the possibility of a new approach to understand psychological and physiological effects of overtraining on information processing and emotional changes.

A Study on the Control System Implementation of Human Body Nerves Signal (인체 신경신호 제어시스템 구현에 관한 연구)

  • Ko, Duck-Young;Kim, Sung-Gon;Choi, Jong-Ho
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.16-24
    • /
    • 2006
  • This paper is aimed to develope of an integrated BCI(Brain Computer Interface System) that make possible for simultaneous multichannel data process and used extra cellular neural activity from the vestibular system instead of electroencephalogram signals for more precision control. The electrical properties pre-amplifier are 47.6 dB of gain, 0.005 % of distortion at 100 Hz, 12M$\Omega$ of input impedance. Window discriminator used two CPU with difference role to increase processing speed so that sampling frequency was 87 kHz. The designed window discriminator has more not only two times in signal resolution power but also ten times in error discrimination power than commericially available discriminator. The proposed method decreases 100 times in amount of integrated data then BCI system during 100 ms.

3D Visualization of Brain MR Images by Applying Image Interpolation Using Proportional Relationship of MBRs (MBR의 비례 관계를 이용한 영상 보간이 적용된 뇌 MR 영상의 3차원 가시화)

  • Song, Mi-Young;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.339-346
    • /
    • 2003
  • In this paper, we propose a new method in which interpolation images are created by using a small number of axiai T2-weighted images instead of using many sectional images for 3D visualization of brain MR images. For image Interpolation, an important part of this process, we first segment a region of interest (ROI) that we wish to apply 3D reconstruction and extract the boundaries of segmented ROIs and MBR information. After the image size of interpolation layer is determined according to the changing rate of MBR size between top slice and bottom slice of segmented ROI, we find the corresponding pixels in segmented ROI images. Then we calculate a pixel's intensity of interpolation image by assigning to each pixel intensity weights detected by cube interpolation method. Finally, 3D reconstruction is accomplished by exploiting feature points and 3D voxels in the created interpolation images.

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

Data Pattern Modeling for Bio-information Processing based on OpenBCI Platform (OpenBCI 플랫폼 기반 생체 정보 처리를 위한 데이터 패턴 모델링)

  • LEE, Tae-Gyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.451-456
    • /
    • 2019
  • Recently, various bioinformation technologies have been proposed, and research and development on the collection and analysis of the human body related bioinformation have been continuously conducted to support the human life environment and healthcare. These biomedical research and development processes add to the redundancy and complexity of the R&D elements and put a heavy burden on the follow-up research developers. Therefore, this study utilizes an open bioinformation platform that effectively supports the collection and analysis of bioinformation to improve the redundancy and complexity of bioinformatics R&D based on the bioinformatics platform. In addition, I propose an open interface that supports acquisition, processing, analysis, and application of bio-signals. In particular, we propose a biometric information normalization pattern model through data analysis modeling of brain wave information based on an open interface.

Classification of General Sound with Non-negativity Constraints (비음수 제약을 통한 일반 소리 분류)

  • 조용춘;최승진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1412-1417
    • /
    • 2004
  • Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditor${\gamma}$ processing and to the task of sound classification. In contrast, parts-based representation is an alternative way o) understanding object recognition in brain. In this thesis we employ the non-negative matrix factorization (NMF) which learns parts-based representation in the task of sound classification. Methods of feature extraction from the spectro-temporal sounds using the NMF in the absence or presence of noise, are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

Problem Based Learning in Physical Therapy (물리치료학에서의 문제중심학습(Problem Based Learning))

  • Lee, Kyung-Hee;Kim, Chul-Yong;Kim, Seong-Hak
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.141-153
    • /
    • 2002
  • Problem based learning(PBL) is one of the learning strategies from the constructivism. It is a learning centered students. The tutors are facillitators as activators, helpers and cooperators not organizer in the classrooms. PBL makes that students learn creativity, independence, reasoning skits, communication and collaboration for problem solving. As the PBL process, students get the problems that are in real situation, discussed with others for brain storming, self directed study and revisited to the situation. They think critically and apply to the real situation. When students are to be physical therapists, they are easy to adopt their job and efficient to manage well. But inspite of a lot of advantages to them, there are much conflict to use as the learning strategies. Students perceived one of best learning method that they have experienced, but there are stress, burden, anxiety, timeless to prepare, lack of information and so on. PBL is effective to learning health oriented subjects, problem solving, even a lot preparation and processing for learning. It is reduced the differences between theories in colleges and practices in the fields. In processing of PBL, students get more many skills than the conventional learning. As trying many times to the classrooms, we can fixed to PBL with mistakes and conflict for better the development of the teaching and learning.

  • PDF