• Title/Summary/Keyword: Boundary value problem

Search Result 601, Processing Time 0.021 seconds

EXISTENCE OF THREE POSITIVE SOLUTIONS OF A CLASS OF BVPS FOR SINGULAR SECOND ORDER DIFFERENTIAL SYSTEMS ON THE WHOLE LINE

  • Liu, Yuji;Yang, Pinghua
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.359-380
    • /
    • 2017
  • This paper is concerned with a kind of boundary value problem for singular second order differential systems with Laplacian operators. Using a multiple fixed point theorem, sufficient conditions to guarantee the existence of at least three positive solutions of this kind of boundary value problem are established. An example is presented to illustrate the main results.

DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS

  • Chung, Soon-Yeong
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1133-1148
    • /
    • 2016
  • In this paper, we first discuss a representation of solutions to the initial value problem and the initial-boundary value problem for discrete evolution equations $${\sum\limits^l_{n=0}}c_n{\partial}^n_tu(x,t)-{\rho}(x){\Delta}_{\omega}u(x,t)=H(x,t)$$, defined on networks, i.e. on weighted graphs. Secondly, we show that the weight of each link of networks can be uniquely identified by using their Dirichlet data and Neumann data on the boundary, under a monotonicity condition on their weights.

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Zhao, Guangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1327-1340
    • /
    • 2019
  • We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

Optimal Control by the Gradient Method (경사법에의한 최적제어)

  • 양흥석;황희융
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.48-52
    • /
    • 1972
  • The application of pontryagin's Maximum Principle to the optimal control eventually leads to the problem of solving the two point boundary value problem. Most of problems have been related to their own special factors, therfore it is very hard to recommend the best method of deriving their optimal solution among various methods, such as iterative Runge Kutta, analog computer, gradient method, finite difference and successive approximation by piece-wise linearization. The gradient method has been applied to the optimal control of two point boundary value problem in the power systems. The most important thing is to set up some objective function of which the initial value is the function of terminal point. The next procedure is to find out any global minimum value from the objective function which is approaching the zero by means of gradient projection. The algorithm required for this approach in the relevant differential equations by use of the Runge Kutta Method for the computation has been established. The usefulness of this approach is also verified by solving some examples in the paper.

  • PDF

EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS FOR A SECOND ORDER M-POINT BOUNDARY VALUE PROBLEM

  • Feng, Yuqiang;Liu, Sang-Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.483-492
    • /
    • 2004
  • Let : [0, 1] $\times$ [0, $\infty$) $\longrightarrow$ [0, $\infty$) be continuous and a ${\in}$ C([0, 1], [0, $\infty$)),and let ${\xi}_{i}$ $\in$ (0, 1) with 0 < {\xi}$_1$ < ${\xi}_2$ < … < ${\xi}_{m-2}$ < 1, $a_{i}$, $b_{i}$ ${\in}$ [0, $\infty$) with 0 < $\Sigma_{i=1}$ /$^{m-2}$ $a_{i}$ < 1 and $\Sigma_{i=1}$$^{m-2}$ < l. This paper is concerned with the following m-point boundary value problem: $\chi$″(t)+a(t) (t.$\chi$(t))=0,t ${\in}$(0,1), $\chi$'(0)=$\Sigma_{i=1}$ $^{m-2}$ /$b_{i}$$\chi$'(${\xi}_{i}$),$\chi$(1)=$\Sigma_{i=1}$$^{m-2}$$a_{i}$$\chi$(${\xi}_{i}$). The existence, multiplicity and uniqueness of positive solutions of this problem are discussed with the help of two fixed point theorems in cones, respectively.

Analysis of Torque on Spur Gear by Inverse Problem (역문제에 의한 평치차의 토크 해석)

  • 박성완;이장규;우창기;김봉각;윤종희;인승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spur gear, using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out for the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.