DOI QR코드

DOI QR Code

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin (Department of Mathematics, Qufu Normal University)
  • Published : 2010.01.31

Abstract

In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.

Keywords

References

  1. O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002), no. 1, 368–379. https://doi.org/10.1016/S0022-247X(02)00180-4
  2. Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052
  3. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
  4. D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), no. 2, 609–625. https://doi.org/10.1006/jmaa.1996.0456
  5. B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl. 44 (2002), no. 1-2, 201–211. https://doi.org/10.1016/S0898-1221(02)00141-4
  6. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
  7. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives, Gordon and Breach, Switzerland, 1993.
  8. S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252 (2000), no. 2, 804–812. https://doi.org/10.1006/jmaa.2000.7123
  9. S. Zhang, Existence of positive solution for some class of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), no. 1, 136–148. https://doi.org/10.1016/S0022-247X(02)00583-8

Cited by

  1. Limit properties of positive solutions of fractional boundary value problems vol.219, pp.5, 2012, https://doi.org/10.1016/j.amc.2012.09.008
  2. The existence of positive solutions of singular fractional boundary value problems vol.62, pp.3, 2011, https://doi.org/10.1016/j.camwa.2011.04.048
  3. Existence of solutions for nonlinear fractional q-difference equations with Riemann-Liouville type q-derivatives vol.47, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0784-3
  4. Nontrivial solutions for a fractional boundary value problem vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-171
  5. Fractional boundary value problems with singularities in space variables vol.71, pp.4, 2013, https://doi.org/10.1007/s11071-012-0443-x
  6. New computational techniques for solving nonlinear problems using g -fractional differential operator vol.330, 2018, https://doi.org/10.1016/j.cam.2017.08.004
  7. Existence and uniqueness of nontrivial solutions for eigenvalue boundary value problem of nonlinear fractional differential equation vol.60, pp.2, 2014, https://doi.org/10.1007/s11565-013-0181-0
  8. Solutions for Integral Boundary Value Problems of Nonlinear Hadamard Fractional Differential Equations vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/2193234
  9. Performance of multi-stage fractured horizontal wells with stimulated reservoir volume in tight gas reservoirs considering anomalous diffusion vol.77, pp.22, 2018, https://doi.org/10.1007/s12665-018-7947-8
  10. On Leaderless and Leader-Following Consensus for Heterogeneous Nonlinear Multiagent Systems via Discontinuous Distributed Control Protocol vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/2917954
  11. Nontrivial solutions for boundary value problems of a fourth order difference equation with sign-changing nonlinearity vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1840-3
  12. Stability and stabilization for stochastic Cohen-Grossberg neural networks with impulse control and noise-induced control pp.10498923, 2018, https://doi.org/10.1002/rnc.4379
  13. Some monotonicity properties and inequalities for the generalized digamma and polygamma functions vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1844-2
  14. Amplitude–frequency relationship to a fractional Duffing oscillator arising in microphysics and tsunami motion pp.2048-4046, 2018, https://doi.org/10.1177/1461348418795813
  15. A Note on the Fractional Generalized Higher Order KdV Equation vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/7035194
  16. Positive Solutions for a System of Semipositone Fractional Difference Boundary Value Problems vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/6835028
  17. Exact Traveling Wave Solutions to the (2 + 1)-Dimensional Jaulent-Miodek Equation vol.2018, pp.1687-9139, 2018, https://doi.org/10.1155/2018/5971646
  18. New fractional derivatives with non-singular kernel applied to the Burgers equation vol.28, pp.6, 2018, https://doi.org/10.1063/1.5026284
  19. Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels vol.133, pp.5, 2018, https://doi.org/10.1140/epjp/i2018-12018-x
  20. Solutions for a Class of Hadamard Fractional Boundary Value Problems with Sign-Changing Nonlinearity vol.2019, pp.2314-8888, 2019, https://doi.org/10.1155/2019/9046472