DOI QR코드

DOI QR Code

THE MOTION OF POINT VORTEX DIPOLE ON THE ELLIPSOID OF REVOLUTION

  • Kim, Sun-Chul (Department of Mathematics, Chung-Ang University)
  • Published : 2010.01.31

Abstract

A pair of point vortices of the same strength but opposite sign is called a vortex dipole. We consider the limiting case where two vortices approach infinitely close while the ratio of the strength to the distance kept constant. The motion of such point vortex dipole on the ellipsoid of revolution is investigated geometrically to conclude that the trajectory draws a geodesic up to the leading order of perturbation, whose direction is determined by the initial orientation of the dipole. Related issues are also remarked.

Keywords

References

  1. M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.
  2. K. Burns and V. J. Donnay, Embedded surfaces with ergodic geodesic flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7 (1997), no. 7, 1509–1527. https://doi.org/10.1142/S0218127497001199
  3. C. Castilho and H. Machado, The N-vortex problem on a symmetric ellipsoid: a perturbation approach, J. Math. Phys. 49 (2008), no. 2, 022703, 12 pp.
  4. M. T. Dibattista and L. M. Polvani, Barotropic vortex pairs on a rotating sphere, J. Fluid Mech. 358 (1998), 107–133.
  5. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-methods and applications. Part I. Second edition. Graduate Texts in Mathematics, 93. Springer-Verlag, New York, 1992.
  6. E. Hally, Stability of streets of vortices on surfaces of revolution with a reflection symmetry, J. Math. Phys. 21 (1980), no. 1, 211–217.
  7. D. Hobson, A point vortex dipole model of an isolated modon, Phys. Fluids A 3 (1991), no. 12, 3027–3033. https://doi.org/10.1063/1.857846
  8. R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Phys. D 116 (1998), no. 1-2, 143–175. https://doi.org/10.1016/S0167-2789(97)00236-4
  9. Y. Kimura, Vortex motion on surfaces with constant curvature, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 245–259. https://doi.org/10.1098/rspa.1999.0311
  10. P. K. Newton, The N-Vortex Problem. Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
  11. C. Snyder, D. Muraki, R. Plougonven, and F. Zhang, Inertia-Gravity waves generated within a dipole vortex, J. Atmos. Sci., to appear
  12. J. B. Weiss and J. C. McWilliams, Nonergodicity of point vortices, Phys. Fluids A 3 (1991), no. 5, part 1, 835–844. https://doi.org/10.1063/1.858014