References
- M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.
- K. Burns and V. J. Donnay, Embedded surfaces with ergodic geodesic flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7 (1997), no. 7, 1509–1527. https://doi.org/10.1142/S0218127497001199
- C. Castilho and H. Machado, The N-vortex problem on a symmetric ellipsoid: a perturbation approach, J. Math. Phys. 49 (2008), no. 2, 022703, 12 pp.
- M. T. Dibattista and L. M. Polvani, Barotropic vortex pairs on a rotating sphere, J. Fluid Mech. 358 (1998), 107–133.
- B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-methods and applications. Part I. Second edition. Graduate Texts in Mathematics, 93. Springer-Verlag, New York, 1992.
- E. Hally, Stability of streets of vortices on surfaces of revolution with a reflection symmetry, J. Math. Phys. 21 (1980), no. 1, 211–217.
- D. Hobson, A point vortex dipole model of an isolated modon, Phys. Fluids A 3 (1991), no. 12, 3027–3033. https://doi.org/10.1063/1.857846
- R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Phys. D 116 (1998), no. 1-2, 143–175. https://doi.org/10.1016/S0167-2789(97)00236-4
- Y. Kimura, Vortex motion on surfaces with constant curvature, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 245–259. https://doi.org/10.1098/rspa.1999.0311
- P. K. Newton, The N-Vortex Problem. Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
- C. Snyder, D. Muraki, R. Plougonven, and F. Zhang, Inertia-Gravity waves generated within a dipole vortex, J. Atmos. Sci., to appear
- J. B. Weiss and J. C. McWilliams, Nonergodicity of point vortices, Phys. Fluids A 3 (1991), no. 5, part 1, 835–844. https://doi.org/10.1063/1.858014