DOI QR코드

DOI QR Code

DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS

  • Chung, Soon-Yeong (Department of Mathematics and the Program of Integrated Biotechnology Sogang University)
  • Received : 2015.07.28
  • Published : 2016.09.01

Abstract

In this paper, we first discuss a representation of solutions to the initial value problem and the initial-boundary value problem for discrete evolution equations $${\sum\limits^l_{n=0}}c_n{\partial}^n_tu(x,t)-{\rho}(x){\Delta}_{\omega}u(x,t)=H(x,t)$$, defined on networks, i.e. on weighted graphs. Secondly, we show that the weight of each link of networks can be uniquely identified by using their Dirichlet data and Neumann data on the boundary, under a monotonicity condition on their weights.

Keywords

References

  1. G. Alessandrini, Remark on a paper by H. Bellout and A. Friedman, Boll. Un. Mat. Ital. A (7)3 (1989), 243-249.
  2. E. Bendito, A. Carmona, and A. M. Encinas, Potential theory for Schrodinger operators on finite networks, Rev. Mat. Iberoamericana 21 (2005), no. 3, 771-813.
  3. E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, Potential theory for boundary value problems on finite networks, Appl. Anal. Discrete Math. 1 (2007), no. 1, 299-310. https://doi.org/10.2298/AADM0701299B
  4. F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Math., vol. 92, Amer. Math. Soc., 1997.
  5. F. R. K. Chung and S.-T. Yau, Discrete Green's functions, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 191-214. https://doi.org/10.1006/jcta.2000.3094
  6. S.-Y. Chung and C. A. Berenstein, $\omega$-harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math. 65 (2005), no. 4, 1200-1226. https://doi.org/10.1137/S0036139903432743
  7. S.-Y. Chung, Y.-S. Chung, and J.-H. Kim, Diffusion and elastic equations on networks, Publ. Res. Inst. Math. Sci. 43 (2007), no. 3, 699-726. https://doi.org/10.2977/prims/1201012039
  8. E. B. Curtis and J. A. Morrow, Determining the resistors in a network, SIAM J. Appl. Math. 50 (1990), no. 3, 918-930. https://doi.org/10.1137/0150055
  9. E. B. Curtis and J. A. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math. 51 (1991), no. 4, 1011-1029. https://doi.org/10.1137/0151051
  10. D. Ingerman and J. A. Morrow, On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region, SIAM J. Math. Anal. 29 (1998), no. 1, 106-115. https://doi.org/10.1137/S0036141096300483
  11. V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, vol. 127, New York, Springer-Verlag, 1998.
  12. J. A. Morrow, D. Ingerman, and E. B. Curtis, Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), no. 1-3, 115-150. https://doi.org/10.1016/S0024-3795(98)10087-3
  13. J. A. Morrow, E. Mooers, and E. B. Curtis, Finding the conductors in circular networks from boundary measurements, RAIRO Model. Math. Anal. Numer. 28 (1994), no. 7, 781-814. https://doi.org/10.1051/m2an/1994280707811
  14. J.-H. Park and S.-Y. Chung, Positive solutions for discrete boundary value problems involving the p-Laplacian with potential terms, Comput. Math. Appl. 61 (2011), no. 1, 17-29. https://doi.org/10.1016/j.camwa.2010.10.026