DOI QR코드

DOI QR Code

DIFFERENTIAL GEOMETRIC PROPERTIES ON THE HEISENBERG GROUP

  • Park, Joon-Sik (Department of Mathematics Busan University of Foreign Studies)
  • Received : 2015.08.01
  • Published : 2016.09.01

Abstract

In this paper, we show that there exists no left invariant Riemannian metric h on the Heisenberg group H such that (H, h) is a symmetric Riemannian manifold, and there does not exist any H-invariant metric $\bar{h}$ on the Heisenberg manifold $H/{\Gamma}$ such that the Riemannian connection on ($H/{\Gamma},\bar{h}$) is a Yang-Mills connection. Moreover, we get necessary and sufficient conditions for a group homomorphism of (SU(2), g) with an arbitrarily given left invariant metric g into (H, h) with an arbitrarily given left invariant metric h to be a harmonic and an affine map, and get the totality of harmonic maps of (SU(2), g) into H with a left invariant metric, and then show the fact that any affine map of (SU(2), g) into H, equipped with a properly given left invariant metric on H, does not exist.

Keywords

Acknowledgement

Supported by : Busan University of Foreign Studies

References

  1. J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS, Regional Conf. Ser. in Math. 50, Amer. Math. Soc., Providence, Rhode Island, 1983.
  2. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
  3. U.-H. Ki and J.-S. Park, Affine inner automorphisms of SU(2), Tsukuba J. Math. 23 (1999), no. 3, 485-493. https://doi.org/10.21099/tkbjm/1496163974
  4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Wiley-Interscience, New York, 1963.
  5. Y. Matsushima, Differentiable Manifolds, Marcel Dekker, Inc. New York, 1972.
  6. J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), no. 3, 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
  7. J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Interdiscip. Inform. Sci. 11 (2005), no. 1, 31-34. https://doi.org/10.4036/iis.2005.31
  8. J.-S. Park, Yang-Mills connections with Weyl structure, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 7, 129-132. https://doi.org/10.3792/pjaa.84.129
  9. J.-S. Park, Projectively flat Yang-Mills connections, Kyushu J. Math. 64 (2010), no. 1, 49-58. https://doi.org/10.2206/kyushujm.64.49
  10. J.-S. Park, Invariant Yang-Mills connections with Weyl structure, J. Geometry Physics 60 (2010), no. 12, 1950-1957. https://doi.org/10.1016/j.geomphys.2010.08.003
  11. J.-S. Park, Curvatures on SU(3)/T(k, l), Kyushu J. Math. 67 (2013), no. 1, 55-65. https://doi.org/10.2206/kyushujm.67.55
  12. J.-S. Park and W.-T. Oh, The Abbena-Thurston manifold as a critical point, Canad. Math. Bull. 39 (1996), no. 3, 352-359. https://doi.org/10.4153/CMB-1996-042-3
  13. H. Urakawa, Calculus of Variations and Harmonic Maps, Amer. Math. Soc., Providence, Rhode Island, 1993.
  14. M. Wang and W. Ziller, Existence and non-existence of homogeneous Einstein metrics, Invent. Math. 84 (1986), no. 1, 177-194. https://doi.org/10.1007/BF01388738
  15. J. A. Wolf, Curvatures in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964), 271-274. https://doi.org/10.1090/S0002-9939-1964-0162206-7