• Title/Summary/Keyword: Boundary value problem

Search Result 601, Processing Time 0.025 seconds

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

MONOTONE ITERATION SCHEME FOR A FORCED DUFFING EQUATION WITH NONLOCAL THREE-POINT CONDITIONS

  • Alsaedi, Ahmed
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • In this paper, we apply the generalized quasilinearization technique to a forced Duffing equation with three-point mixed nonlinear nonlocal boundary conditions and obtain sequences of upper and lower solutions converging monotonically and quadratically to the unique solution of the problem.

EXISTENCE OF THE SOLUTIONS FOR THE ELLIPTIC PROBLEM WITH NONLINEAR TERM DECAYING AT THE ORIGIN

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • We consider the multiplicity of the solutions for the elliptic boundary value problem with $C^1$ nonlinear term decaying at the origin. We get a theorem which shows the existence of the nontrivial solution for the elliptic problem with $C^1$ nonlinear term decaying at the origin. We obtain this result by reducing the elliptic problem with the $C^1$ nonlinear term to the el-liptic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced the elliptic problem with bounded nonlinear term.

A MULTIPLICITY RESULT FOR FOURTH-ORDER BOUNDARY VALUE PROBLEMS VIA CRITICAL POINTS THEOREM

  • Zou, Yu-Mei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1541-1547
    • /
    • 2011
  • In this paper, using B.Ricceri's three critical points theorem, we prove the existence of at least three classical solutions for the problem $$\{u^{(4)}(t)={\lambda}f(t,\;u(t)),\;t{\in}(0,\;1),\\u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0,$$ under appropriate hypotheses.