• 제목/요약/키워드: Boundary mode method

검색결과 522건 처리시간 0.031초

비선형 정규모드를 이용한 보의 비평면 자유진동해석 (Analysis of Nonplanar Free Vibrations of a Beam by Nonlinear Normal Mode)

  • 이원경;이규수;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.441-448
    • /
    • 2000
  • An investigation into the nonlinear free vibrations of a cantilever beam which can have not only planar motion but also nonplanar motion is made. Using Galerkin's method based on the first mode in each motion, we transform the boundary and initial value problem into an initial value problem of two-degree-of-freedom system. The system turns out to have two normal modes. By Synge's stability concept we examine the stability of each mode. In order to check validity of the stability we obtain the numerical Poincare map of the motions neighboring on each mode.

  • PDF

독립좌표연성법을 이용한 원환판의 자유진동해석 (Free Vibration Analysis of an Annular Plate by the Independent Coordinate Coupling Method)

  • 허석;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.564-571
    • /
    • 2008
  • This paper is concerned with the free vibration analysis of an annular plate with boundary conditions of simply supported-free, clamped-free and free-free, respectively. Exact solutions for the natural frequency and mode of an annular plate can be obtained by solving the differential equation but other methods such as the Rayleigh-Ritz method and the finite element method can be also used. In this research, we applied the Independent Coordinate Coupling Method(ICCM) to the annular plate and prove that the ICCM can accurately predict the natural frequency and mode shape of the annular plate. The numerical results show that the ICCM can be used effectively for the free vibration problem of plate with a hole compared to the Rayleigh-Ritz method and the finite element method.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

탄성지지된 복합재료 상판의 고유 진동수 (Natural Frequency of Elastic Supported Building Slab)

  • 김덕현;이정호;박정호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.215-222
    • /
    • 1997
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the subject problem is presented. This problem represents the building slabs with a kind of passive and active control devices. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

이종 접합체의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of fracture Toughness on Interface Cracks in Bonded Dissimilar Materials)

  • 정남용
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.110-116
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded dissimilar materials has been proposed and discussed.

트로코이달 헬리컬 기어의 비정상상태 유한요소해석

  • 박용복;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.37-46
    • /
    • 1994
  • In metal forming, there ar problems with recurrent geometric characteristics and without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. The present study deals with nonsteady-state three-dimensional finite element analysis for extrusion of a trocoidal helical gear through a curved die. The boundary-directed remeshing scheme based on the modular remeshing technique is developed to reduce the errors arising in fitting old and new mesh systems. The computed extrusion pressure in reaching the near steady-state loading stage is compared with the results of the experiment and the steady-state analysis. The three-dimensional deformed pattern involving warping at the extruded end due to torsional deformation mode is demonstrated.

  • PDF

직사각형판(直四角形板)의 탄성접수진동(彈性接水振動)에서 주변지지조건(周緣支持條件)의 영향(影響) (The Effect of the Boundary Condition on the Added Mass of a Rectangular Plate)

  • 김극천;김재승
    • 대한조선학회지
    • /
    • 제15권2호
    • /
    • pp.1-11
    • /
    • 1978
  • Using the elliptical cylindrical function, the added masses of thin rectangular plates vibrating elastically in an infinite ideal fluid are calculated. For the boundary conditions of the plates, two models are adopted. The plate which is simply-supported on two opposite edges while the other edges are clamped is one and the other is the plate which is simply-supported on two opposite edges while the other edges are free. Same examples are calculated numerically for the fundamental mode in each cases. And the effect of the boundary condition on the added mass are investigated by comparing these data with those of Kim's[4] which were calculated for the simply-supported plates by the same method. It is concluded that it is possible to predict the added mass of a rectangular plate, whose boundary condition is not treated in this report, by using the result of this investigation.

  • PDF

원통형 배열 구조물의 접수진동 해석 (Vibration Analysis of Water-loaded Cylindrical Array Structures)

  • 신창주;홍진숙;정의봉;서희선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.175-182
    • /
    • 2009
  • This paper summarizes a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the water-loading. The mode mapping method is proposed and verified to take into account the water-loading with the minimum DOF for the analysis. The cyclic symmetric method is then reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The solution procedure is finally proposed and applied successfully for a simplified water-loaded cylindrical array structure.

주기대칭법을 이용한 원통형 배열 구조물의 접수진동 해석 (Vibration Analysis of Waterloaded Cylindrical Aarray Structures)

  • 신창주;홍진숙;정의봉;서희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1054-1059
    • /
    • 2007
  • This paper summarized a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the waterloading. The cyclic symmetric method is firstly reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The mode mapping method is then proposed and verified to take into account the waterloading with the minimum DOF for the analysis. The solution procedure is finally proposed and applied for a waterloaded cylindrical array structure.

  • PDF

두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법 (Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects)

  • 김나은;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.