• Title/Summary/Keyword: Boundary integral equation method

Search Result 226, Processing Time 0.02 seconds

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

A Study on Structural Analysis for Aircraft Gas Turbine Rotor Disks Using the Axisymmetric Boundary Integral Equation Method (축대칭 경계적분법에 의한 항공기 가스터빈 로터디스크 구조해석에 관한 연구)

  • Kong, Chang-Duk;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2524-2539
    • /
    • 1996
  • A design process and an axisymmetric boundary integral equation method for precise structural analysis of the aircraft gas turbine rotor disk were developed. This axisymmetric boundary integral equation method for stress and steady-state thermal analysis was improved in solution accuracy by appling an implicit technique for Cauchy principal value evaluation, a subelement technique for weak singular integral evaluation and a double exponentical integral technoque for internal point solution near boundary surfaces. Stresses, temperatures, low cycle fatigue lifes and critical speeds for the turbine rotor disk of the thrust 1421 N class turbojet engine were analysed in a pratical calculation model problem.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

Elastic Analysis of Unbounded Solids Using a Mixed Numerical Method (혼합 수치해석 방법을 이용한 무한고체의 탄성해석)

  • Lee , Jung-Ki;Heo, Kang-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions.

  • PDF

Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.