• Title/Summary/Keyword: Boundary configuration

Search Result 281, Processing Time 0.027 seconds

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Visual Tracking Technique Based on Projective Modular Active Shape Model (투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법)

  • Kim, Won
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.77-89
    • /
    • 2009
  • Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

Anchor and Mooring Line Analysis in Cohesive Seafloor (해성점토지반에 관입된 앵커 및 닻줄의 변형해석)

  • Han Heui-Soo;Jeon Sung-Kon;Chang Dong-Hun;Chang Seo-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors has been developed. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or synthetic wires embedded in layered seafloor soils. The solution method utilizes a systematic iterative search method based on specific boundary conditions. This paper describes the principles associated with the development of the solution for the mooring line analysis. Comparisons of predictions with results from a series of field tests of mooring lines on various types of drag anchors are also described. Comparisons include the tension in anchor, the length of mooring line on the bottom, and the angle of mooring line at the water surface buoy. The results indicate that the analytical solution method is capable of predicting the behavior of mooring lines with high degree of accuracy.

2D Analytical Model to Evaluate Behavior of Pipeline in Lowering Phase (자원 이송용 파이프라인의 내리기 단계에서 평면 거동 평가를 위한 해석 모델)

  • Jung Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.467-475
    • /
    • 2023
  • To ensure the safety of the pipeline against large deformation of the pipeline during lowering construction, the analysis for pipeline becomes emphasized. The FE analysis has a lower efficiency at calculating time, while it could be obtained high accuracy. In this paper, a reasonable analytical model for analysis of pipeline is proposed during lowering-in. This analytical model is partitioned considering the geometrical characteristics and modeled as two parameters Beam On Elastic Foundation and Euler-Bernoulli beam considering the boundary condition. This takes into account the pipeline-soil interaction and the axial forces acting on the pipeline. Previous model can only be applied to standardized conditions, whereas the proposed model defined as Segmented Pipeline Model can be considered for the majority of construction conditions occurred during lowering-in. In addition, minimized assumptions and segmented elements lead to improve the convenience and applicability of modeling. Nevertheless, the model shows accurate results compared to the FE model. Accordingly, it is expected that it will be used efficiently for configuration management as well as safety assessment of pipeline during lowering-in.

Design and Verification of Shear Buckling Test Fixture for Composite Laminate (복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증)

  • Park, Sung-Jun;Ko, Myung-Gyun;Kim, Dong-Gwan;Kim, Sang-Kuk;Moon, Chang-Oh;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.158-167
    • /
    • 2014
  • Final goal of this research is to establish the database for correlation factors which connects the test and analysis results of shear buckling allowables for composite plate. To accomplish the goal, extensive test and analysis works are required. In this paper, as the first step, a frame-type fixture for shear buckling test was designed and validated through the test and analysis. Final configuration of the fixture were determined via parametric study on the effect of specimen size, cross-sectional dimensions, and number of fastening bolts on the shear buckling load. Results of the study showed the designed frame-type fixture successfully induces the shear buckling of composite plate. However, there were deviations between the test results and analysis results for ideal case under pure shear load, which were mainly caused by the difference in plate sizes for both cases. The difference were larger in the plates with larger hole and simply supported boundary condition. It is concluded from the results that while the designed fixture can be used for the clamped plates with acceptable accuracy, it shows larger difference in the simply supported plates.

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF