• 제목/요약/키워드: Boundary Method

검색결과 7,422건 처리시간 0.033초

Extension of the adaptive boundary element scheme for the problem with mixed boundary conditions

  • Kamiya, N.;Aikawa, Y.;Kawaguchi, K.
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.191-202
    • /
    • 1996
  • This paper presents a construction of adaptive boundary element for the problem with mixed boundary conditions such as heat transfer between heated body surface and surrounding medium. The scheme is based on the sample point error analysis and on the extended error indicator, proposed earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary, their errors are also interconnected by the specified condition. The extended error indicator on each boundary element is modified to meet with the situation. Two numerical examples are shown to indicate the differences due to the prescribed boundary conditions.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사 (NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.

Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions

  • Panyatong, Monchai;Chinnaboon, Boonme;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.627-641
    • /
    • 2019
  • The paper focuses on bending analysis of the functionally graded (FG) plates with arbitrary shapes and boundary conditions. The material property of FG plates is modelled by using the power law distribution. Based on the first order shear deformation plate theory (FSDT), the governing equations as well as boundary conditions are formulated and obtained by using the principle of virtual work. The coupled Boundary Element-Radial Basis Function (BE-RBF) method is established to solve the complex FG plates. The proposed methodology is developed by applying the concept of the analog equation method (AEM). According to the AEM, the original governing differential equations are replaced by three Poisson equations with fictitious sources under the same boundary conditions. Then, the fictitious sources are established by the application of a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential problem. Therefore, the kernels of the boundary integral equations are conveniently evaluated and readily determined, so that the complex FG plates can be easily computed. The reliability of the proposed method is evaluated by comparing the present results with those from analytical solutions. The effects of the power index, the length to thickness ratio and the modulus ratio on the bending responses are investigated. Finally, many interesting features and results obtained from the analysis of the FG plates with arbitrary shapes and boundary conditions are demonstrated.

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

저 레이놀즈수에 적용 가능한 가상경계기법 (AN IMMERSED BOUNDARY METHOD FOR LOW REYNOLDS NUMBER FLOWS)

  • 박현욱;이창훈;최정일
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.34-41
    • /
    • 2013
  • We develop a novel immersed boundary (IB) method based on implicit direct forcing scheme for incompressible flows. The proposed IB method is based on an iterative procedure for calculating the direct forcing coupled with the momentum equations in order to satisfy no-slip boundary conditions on IB surfaces. We perform simulations of two-dimensional flows over a circular cylinder for low and moderate Reynolds numbers. The present method shows that the errors for estimated velocities on IB surfaces are significantly reduced even for low Reynolds number with a fairly large time step while the previous methods based on direct forcing failed to provide no-slip boundary conditions on IB surfaces.