• Title/Summary/Keyword: Bottom scattering

Search Result 97, Processing Time 0.027 seconds

Characteristics and Influence of Scattering Radiation in Cultural Heritage Radiography (문화재 방사선 조사에서 발생하는 산란 방사선의 특성과 영향)

  • Song, Jung Il;Park, Young Hwan;Yu, Ji Hye
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.539-548
    • /
    • 2018
  • This study was conducted to evaluate the effects of scattering radiation, which was not considered in the cultural Heritage radiography, by evaluating the relationship between the tube voltage (unit: kVp), film-floor-distance(FFD), and lead screen layout. The density (unit: D) of the test specimens and the scattered radiation increased with the tube voltage. The density of the test specimens showed an average deviation of 1.4 D; it was 0.17 D at 60 kVp, 1.54 D at 160 kVp, and 2.97 D at 220 kVp. The mean density of the scattered radiation was 0.10 D at 60 kVp, 0.40 D at 160 kVp, and 0.46 D at 220 kVp. The density tended to increase when the tube voltage ranged between 60 kVp and 160 kVp, as the FFD distance increased. However, a change in the permeation density was not observed for high voltages(160 kVp-220 kVp). Scattered radiation was observed when FFD was 50 mm, 100 mm, and 200 mm and no lead screen was used and the bottom surface was replaced with the lead screen. No scattered radiation was observed when FFD was 0 mm. The identification rate ranged from 2.08% to 2.67%, according to the FFD, for a 160 kVp tube voltage, and from 2.67% to 3.33% for a 220 kVp tube voltage.

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

A Prediction Method of Wave Deformation in Harbors Using the Mild Slope Equation (완경사 방정식을 이용한 항내의 파고예측)

  • 최선호;박상길
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 1993
  • Since major reason of disaster in coastal area is wave action, prediction of wave deformation is one of the most important problems to ocean engineers. Wave deformations are due to physical factors such as shoaling effect, reflection, diffraction, refraction, scattering and radiation etc. Recently, numerical models are widely utilized to calculate wave deformation. In this study, the mild slope equation was used in calculatin gwave deformation which considers diffraction and refraction. In order to slove the governing equation, finite element method is introduced. Even though this method has some difficulties, it is proved to predict the wave deformation accurately even in complicated boundary conditions. To verify the validity of the numerical calculation, experiments were carried out in a model harbour of rectangular shape which has mild slope bottom. The results by F.E.M. are compared with those of both Lee's method and the experiment. The results of these three methods show reasonable agreement.

  • PDF

Design and Simulation of Depth-Encoding PET Detector using Wavelength-Shifting (WLS) Fiber Readout

  • An, Su Jung;Kim, Hyun-il;Lee, Chae Young;Song, Han Kyeol;Park, Chan Woo;Chung, Young Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.305-310
    • /
    • 2015
  • We propose a new concept for a depth of interaction (DOI) positron emission tomography (PET) detector based on dual-ended-scintillator (DES) readout for small animal imaging. The detector consists of lutetium yttrium orthosilicate (LYSO) arrays coupled with orthogonal wavelength-shifting (WLS) fibre placed on the top and bottom of the arrays. On every other line, crystals that are 2 mm shorter are arranged to create grooves. WLS fibre is inserted into these grooves. This paper describes the design and performance evaluation of this PET detector using Monte Carlo simulations. To investigate sensitivity by crystal size, five types of PET detectors were simulated. Because the proposed detector is composed of crystals with three different lengths, degradation in sensitivity across the field of view was also explored by simulation. In addition, the effect of DOI resolution on image quality was demonstrated. The simulation results proved that the devised PET detector with excellent DOI resolution is helpful for reducing the channels of sensors/electronics and minimizing gamma ray attenuation and scattering while maintaining good detector performance.

Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection (Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용)

  • Yeom, Ki-Tae;Park, Jung-Seo;Bae, Choong-Sik;Park, Jeong-Nam;Kim, Sung-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

Wave Force Analysis of the Three Vertical Cylinders in Water Waves

  • Kim, Nam-Hyeong;Cao, Tan Ngoc Than
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.543-552
    • /
    • 2008
  • The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.

Modeling Phased Array Ultrasonic Testing of a Flat-Bottom Hole in a Single Medium

  • Park, Joon-Soo;Kim, Hak-Joon;Song, Sung-Jin;Seong, Un-Hak;Kang, Suk-Chull;Choi, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The expanded multi-Gaussian beam model has recently been developed that can calculate the radiation beam field from a single, rectangular transducer with great computational efficiency. In this study, this model is adopted to calculate the radiation beam field for a phased array transducer with various time delays to achieve steering and/or focusing. The calculation beam fields are compared to those obtained by well known Rayleigh-Sommerfeld integral that provides the exact solution in order to explore the validity of the expanded multi-Gaussian beam model And then, this study proposes a complete ultrasonic measurement model including the expanded beam model, far-field scattering model and system efficiency, Using the proposed model, phased array ultrasonic testing signals for a flat-bottomed hole with/without focusing were performed.

다양한 기판에 UV-O3 처리를 통한 polystyrene bead의 self-assembly 및 이에 기반한 금속 나노구조체 array 제조

  • Lee, Seon-U;Kim, Jae-Yong;Lee, Myeong-Gyu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.85.2-85.2
    • /
    • 2018
  • 금속 나노구조체에서의 localized surface plasmon resonance와 surface-enhanced Raman scattering 현상은 센서를 비롯한 다양한 응용분야를 가지고 있다. 나노구조체 array 형성을 위한 대표적인 top-down 방식인 e-beam lithography 공정은 제조비용이 매우 높고 대량생산 및 대면적화에도 한계가 있기에 polystyrene(PS) bead의 self-assembly를 이용한 nanosphere lithography와 같은 bottom-up 방식이 폭넓게 연구되고 있다. Closed-packing된 PS bead의 monolayer를 얻기 위해서는 기판의 친수성 처리가 필요한데, 기존의 많은 연구에서는 기판의 표면개질에 화학적 공정을 이용하고 있다. 하지만 이는 기판 선택의 자유도를 떨어뜨리는 원인이 된다. 금속이나 실리콘 기판에서는 산성 용액을 이용한 화학적 처리방법을 적용할 수 있지만 SU-8과 같은 감광액 및 폴리머 기판에서는 산에 대한 내구성이 떨어져 화학적 공정의 도입이 불가능 하기 때문이다. 본 연구에서는 이러한 한계점을 극복하기 위해 $UV-O_3$ 공정으로 친수성 처리된 다양한 기판에서 spin coating을 통한 PS monolayer를 제조하였는데, UV 램프의 에너지 조절을 통해 기판에 붙어있는 유기물들을 효과적으로 제거할 수 있었고 $O_3$ 생성 및 분해 과정에서 기판 표면에 친수성 화학 작용기를 생성시킬 수 있었다. 제조된 PS layer를 mask로 사용하여 Ag, Al, Au 등 다양한 나노구조체 array를 형성하여 array 주기에 따른 플라즈몬 공명 특성을 분석하였다. 레이저 조사로 나노구조체의 형상을 변화시킴으로써 동일한 물질과 주기를 가진 array에서도 플라즈몬 특성의 변조가 가능함을 확인하였는데, 이는 금속 나노구조체의 응용측면에서 매우 고무적인 발견이다.

  • PDF

Design of a Submerged Coastal Structure for Concentration of Wave Energy and Control of a Coastal Area (파랑에너지 집적 및 연안해역 제어를 위한 해저구조물의 설계)

  • Lee, J.W.;Krock, H.J.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.37-56
    • /
    • 1994
  • The effects of wave energy focusing by a submerged berm type of structure is examined. The fundamental idea is based on the phenomenon of refraction by a lens-shaped crescent structure which results in the focusing of wave energy on the center line of the structure. The shape of the submerged structure is a complex curve combining circular with elliptical elements. Based on the design procedure, a special configuration of structure(termed herein as a triple crescent structure) is introduced. Next, some hydraulic model tests are performed to confirm the wave focusing effect in laboratory. In addition, in order to interpret the wave focusing performance behind the structure, a numerical procedure by the hybrid element method is used on the basis of the conventional mild slope equation but modified and extended to allow for steeper bottom slopes and higher curvature. The modified refraction and diffraction provide additional mechanism for wave height amplification and the maximum amplification for triple crescent structure is presented. It also allows for the possibility of wave energy scattering with the change of the incident wave direction. Comparisons with previous theoretical results involving a submerged crescent shape structure are described.

  • PDF