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Abstract : The diffraction of waves by three bottom fixed vertical circular cvlinders is investigated by using the boundary element method.
This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves
and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential
theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral
equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study
are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also
in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such as
the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for

the design of various offshore structures to be constructed in the future.
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1. Introduction

Recently, a number of large offshore structures, such as
a largescale offshore airport or work station, have been
constructed with several elementary members or legs such
as cylinders. Thus, the interactions between waves and a
group of cyhnders need to be investigated for accurate
theoretical predictions, and much work has been done on
this subject in recent years. Spring and Monkmeyer (1974)
obtained a solution interaction among two arbitrary
Kagemoto and Yue (1986)

direct matrix method and the multiple

cylinders in water waves.
combined the
scattering technique to obtain an exact algebraic method.
After these researches, many theories that analyze the
interaction between waves and number of cylinders were
suggested (Chakrabarti, 2000; Kim, 1992; Williams and Li,
2000).

There are many previous studies on piles with boundary
element method. Notably, based on the linear diffraction
theory, the wave force analysis of the vertical circular
cylinder by boundary element method was studied by Kim
and Park (2007), and its numerical results by boundary
element method were strong agreement with those of
MacCamy and Fuchs (1954).

In this paper, a practical method of boundary element

method for calculating wave force acting on three vertical
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cylinders is presented. The wave force analysis method
based on Green’s second theorem in indirect boundary
element method using linear velocity potential theory is
developed. To verify this method, the wave forces acting on
three vertical circular cylinders obtained in present
numerical method are compared with those of Han and
Ohkusu (1995), Chakrabarti (1978). The comparisons show
that the results of present study have strong agreement
with their results. Also in this paper, several numerical
examples are given to illustrate the effects of various
parameters on the wave exciting force such as the
separation distance, the wave number and the incident
wave angle. The run-up and free-surface elevation around
three vertical circular cylinders group are also investigated.

2. Basic Equations

2.1 Formulation of problem

The interaction of linear waves with three bottonrfixed
Three
vertical circular cylinders, having radius a, are arranged in
the water of uniform depth h. The global Cartesian
coordinate system (z,y,2) is defined with the origin located

vertical cylinders is investigated in this paper.

at the center of the geometry and on the still-water level,

the =z axis directed vertically, * and y axis directed
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horizontally. The geometry of this problem is shown in Fig. 1.

As wusual, it is assumed that the fluid is inviscid,
incompressible, its motion is irrotation, and fluid motion is
small. The structure subjected to a strain of regular surface
wave of height H and the angular frequency ¢ propagating
at an angle 8 to the positive z axis. The velocity potential
@ can be defined by:

8(zge) = B[ L Lo(ay,)e) m

where R,[denotes the real part of complex expression.

From the linear feature of the potential flow, the total
velocity potential in equation (1) is a sum of incident wave
velocity potential and scattered (reflected plus diffracted)
wave velocity potential and is defined as follows:

d=¢;, o, 2)
— COShk(h_I—Z) . _ ik{zcosf+ising)
T coshkh v Wi=e @

where ¢, and ¢, are incident wave velocity potential and

scattered wave velocity potential, respectively. H/2 is wave
amplitude, ¢ is acceleration due to gravity, and the wave
number k is the positive real root of the dispersion relation:

o? = gktanhkh @)

Boundary value problems by the formulation of scattered

wave velocity potential ¢, are given as follows:

e Laplace equation:

V2, =0 in Q (5.a)
¢ Free surface boundary condition:

%ﬁs—— Egiqﬁs =0 on [} (5.b)
¢ Cylinder surface boundary condition:

%=—?£i on I, , m=123 (5.0)
e Sea bed boundary condition:

a:;szo on I, 5.d)

e Radiation boundary condition:

ikqﬁs}: 0 on I (5.e)

) 3¢,
R e
lim \/_{ oR
where Q is fluid region, I is free surface, I’ o m=1,2,3
is the body surface of cylinder 1, cylinder 2 and cylinder 3
respectively, I'5 is the sea bed, ¢ is the imaginary unit
i=+v—1, and Iy is virtual boundary at infinity and
R=+va*+4.
The scattered wave velocity potential ¢, are defined as

follows

_ coshk(h+2)

¢s - coshkh Ws(%y) (6)

If the definitions of equation (3) and (6) are substituted
into equations (5.a)"(5.e), the boundary value with ¥, are

obtained as follows:

VA, KT, =0 in Q (7.a)

oo r =1,2,3 (7b)

on  on on L, M=0s ’
v,

lim \/R{ S—iku'/s}zo on 8, (T.c)

R—00 BR

The quantity n is the direction normal at the structure
surface and defines the outward normal to a panel on the
surface cylinder.

In equations (7.a)~(7.¢c) boundary value problems are
two dimensional problems of z—y plane shown in Fig.
2. Finally, by analyzing boundary value problem by ¥, , the
scattered wave velocity potential is determined, and wave
pressure and wave force acting on cylinders are calculated
by using it.
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Fig. 1 Definition of three vertical circular cylinders
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2.2 Formulation of Boundary Element Method

The fundamental solution & of the Helmholtz equation is
defined by:

VIGHEGHz—&y—n) =0 (8

where 6§ is Dirac Delta function. G is the fundamental
solution for Helmholtz equation:

= %H&”(kr) )

where r=V(z—&*+(y—n)?: (&n)and (z,y)

coordinate of the source point and observation point
respectively. The H\"(kr) = Jy(kr)+iY,(kr)is the Hankel

function of the first kind of order zero. If the observation

are the

point ¢ is presented over boundary S plan, the boundary
value problems of Eqgs. (8.a)7(8.c) are defined by integral

equation as Eq. (11):

(10)

/ v 9% 4= / % s
2 Yo Syt Syt Syt % on Syt S+ 8y +s. N

where S, : R—oo is shown by closed curve with circular

shape in a virtual boundary plane in Fig. 2.
If observation point ¢ is near S s the Eq. (10) is the

integral equation for S,,. When S, is near S I with »> 1,

kr=vr, r= R, the Hankel functions are given as follows:

(11)

The integral term for S, of Eq. (10) is substituted as

follows:

BWS

/ ds— Gds
s on

1 D) _1% o

v,
 © f )d
=2 / ’kw_(

By, substituting Eq. (12) into Eq. (7c), the resulting is as

S)da (12)

follows:

(13

v,
/ de-/ — Gds=0
S on

the final
scattered wave potential is given as follow:

Therefore, boundary integral equation on

o,
llPSi-i-/ Wa—Gds—/ ~ Gds (14)
2 Sy ¥y +8y 0N Sy + 8, + 8y O

't

Eq. (14) is the integral equation for the near curve SHW,

m =1,2,3 of the cylinder surface.

The scattered wave velocity potential is derived by
solving the Eq. (14).
potential and scattered wave velocity potential are known,

Once the incident wave velocity

then the pressure and the wave forces on each cylinders
can be computed. The scattered wave potential in the
domain Q can be obtained after the scattered wave
potential on the boundary has been calculated. If the
observation point 4 is placed in the domain €, the integral
equation for scattered wave potential in the domain Q is
given as follow:

/ owe
s1 =
Sy + 8y +Sy O

H,

(15

G'ds—/ W‘;égd
Syt 8y +S, 0T

Hl

e

G .
where ¥, W are the scattered wave potential and the

normal derivative of the scattered wave potential on the

boundary 5',,1, SH2 , and SH3 derived by solving Eq. (14).

2.3 Formulation of Wave Force

The wave pressure acting on the vertical -circular

cylinder is defined as follows:

Az, y, 2 t)= R, [p(z,y, 2)e” ] (16)

The Bernoulli equation is used to get the pressure:

H

where p is the water density.
The wave force in j direction acting on the cylinder mth
is defined as follows:

F'=R,|[fre ] (8)
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where j is the force direction.
The wave force in j direction is presented by using
¥, ¥, as follows:

H coshk(z+h)
2

coshkh (19)

fi =rg /S (&, +¥,)nds

Finally, by integrating the wave force from Eq. (19) in
the z direction, the force on the cylinder is defined as
follows:

Fig. 2 Boundary discretization and the direction of
numerical integration for calculating scattered wave
potential.

H tanhkh
fi=ry %

(&, +2,)n ds (20)

Sy

where n; is the normal vector in j direction, Sy is the

boundary surface of the cylinder mth, m=1, 2, 3.

2.4 Formulation of Free Surface Elevation

The fluid region around the cylinders is taken for
calculating free-surface elevation. The computation fluid
region Q is bounded by boundary of the cylinders SHl, SH2 ,

SH3 and the outside boundary Sz of the computation fluid

region as shown in Fig. 3. Fig. 3 demonstrates the
boundary discretization and the direction of numerical
integration for calculating free-surface elevation.

The integral equation for the incident wave potential in
the domain Q as follows:

o FYel
y'/i:f ¢ Gds~/ Lpf—
Syt Syt Sy+8y 0N Syt Syt Sy+sy O

(21)

where ¥, are the incident wave potential in the domain Q.

. o
Wia

are the incident potential and the normal

derivative of the incident wave potential on the boundary
1 .

SHI, SHz’ SH3 and Sp .G:—Elogr is the fundamental

solution for Laplace equation.
The integral equation for the scattered wave potential in
the domain Q as follows:

e G
A 2/ > G'ds—f Ui——ds
Syt 8yt 5,855 OM Syt Sy+Sy+sy oM

(22)

where ¥, are the scattered wave potential in the domain.

e

v, 6—1; are the scattered wave potential and the normal

derivative of the scattered wave potential on the boundary
SH1 , SH2, SH3 and Sy derived by solving Eq. (14) and Eq.

(15). G= %Hél)(kr)is the fundamental solution for

Helmholtz equation.

Once the incident wave potential and scattered wave
potential are known then the total velocity potential ¢ can
be calculated. The free-surface elevation n can be calculated
from:

(23)

B —

Q
- Cylinder 1
Cylinder 2

T Y. SH[
} >Sﬁz® F]_‘X S, Sp

% Cylinder 3

—

_|_

+

Fig. 3 Boundary discretization and the direction of numerical
integration for calculating free-surface elevation.

3. Numerical Analysis and Remarks

Fig. 4 demonstrates the geometries of three cylinders in
triangular array, column array and row array used in
present study. The figure shows three cylinders having
radius a, =a, =a3 =a subjected to incident wave comes
from the left side. The maximum runrup is determined at
point A, B, C on the cylinder 1, cylinder 2 and cylinder 3
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respectively. The wave exciting forces on the cylinders and
the free-surface elevation around the cylinders 10a distance
are calculated.

Fig. 5 and Fig. 6 show the wave forces in x direction
and y- direction acting on cylinders in triangular array
versus the wave number ka for the radius a; =a,=a; =1,
h/a=10, and Dfa=5. The computed results of present
study are strong agreement with those of Han and Ohkusu

(1995).

a)

incident
wave

b)

wncident
wave

— 10z

c)

-
— 10a
>
— A 1
L incident 2

wave B % ‘i

4

— ° (3

— 10a
e

. __l
-

Fig. 4 Geometries for! (a) Triangular array, (b) Column
array, (c) Row array
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Fig. 5 Wave forces in z-direction versus wave
number ka for radius a, =a, =a; =1, h/a=10,
Dia=5

Fig. 7 and Fig. 8 show the wave forces in z-direction
acting on cylinders in triangular array versus the ratio
y=2a/D for the radius a, =a,=a; =1 and h/a=10. In
this geometry, y=1 represents that the cylinders are
touching each other, whereas v=0 means that the distance
between two cylinder centers D—co.

Fig. 9 shows the wave forces in y-direction acting on
cylinder 1 and cylinder 3 in triangular array versus the
ratio y=2a/D for the radius a, =a, =a; =1 and h/a= 10.
To verify this method, the wave forces in x-direction and y
-direction obtained in present study are compared with
those of Chakrabarti (1978). The comparisons show that
they are strong agreement.

Fig. 10 and Fig. 11 show the wave exciting forces in z-
direction on cylinder 1 and cylinder 2 with the variation of

incident wave angle 3=0°,30° 45° 60°, respectively.

T4 Wave force on cylinder 1 and cylinder 3| ;r;glvd:nt 1
& Han and Ohkusu(1895) PR 2 D
124 . "
o
& 104
I
=3
a 08
~
>
(=4
w 06
O
8
@ 04
02+
00 T Y T T T T T
00 02 04 06 08 10 12 14
ka

Fig. 6 Wave forces in y-direction acting on cylinder

1 and cylinder 3 versus wave number ka for radius
a,=ay=a;=1, hfa=10, Dfa=5

- 547 -



Wave Force Analysis of the Three Vertical Cylinders in Water Waves

FORCE (Fx/ pg(H/2)a)

O~ NwWMOOD
PSS N EYI I B |

ka=0.1 (Numerical calculation) %
-ka=0.5 (Numerical calculation) s
ka=1.0 (Numerical calculaticn) -

(Chakrabarti(1878))
(Chakrabarti(1878))
(Chakrabarti(1878))

T
0.2 04 06 [oR:] 1.0
y=2a/D

a
o

incident wave angle p=0°
7 =0 - incident wave angle p=30"
- incident wave angle p=45"
64 /AN e incident wave angle p=60°
NE 5 |
%, 7
5] 2o b
2 incident
& 34 wave
~
(u)J ]
€ 2]
£
14
04
T T N T T T T T 1
00 0.5 1.0 15 2.0 25 3.0

Fig. 7 Wave forces in z-direction acting on cylinder 1 Fig. 10 Wave forces in z-direction on cylinder 1
and cylinder 3 versus ratio v for radius versus the variation of incident wave angle for radius
o =a,=a,=1, h/a=10 a,=ay,=ay =1, h/a=10, D/a=10
ka=0 1 (Numerical calculation) X ka=01 (Chakrabarti(1878}) L o
<~ ka=0 5 (Numerical calculation) 4 ka=05 (Chakrabarti(187B)) incident wave angle p=0
1a_ ka=10 (Numerical calculation) e ka=10 (Chakrabam(w'm)) 104 <woemeeenincident wave angle B=30u
; o
] [ RS incident wave angle =45
. - incident wave angle p=60°
3 7. ®
© —‘
& T o Py D
1:/ 5 incident
> Y 4 wave @:g%“ji
2 =
o & 4
w w
2 Q
o o
e [s]
w24
0 T T T T 1 o T T T T T T T T T v 1
0o 02 04 08 08 10 0.0 05 10 15 20 25 30
y=2a /D

Fig. 8 Wave forces in z-direction acting on cylinder 2
versus ratio v for radius e, =a, =a; =1, h/a=10
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Fig. 9 Wave forces in y-direction acting on cylinder 1

and cylinder 3 versus ratio v for radius
a,=a,=a;=1, h/a=10

Fig. 11 Wave forces in x- direction on cylinder 2
versus the variation of incident wave angle for radius
a,=ay=a; =1, h/a=10, D/a=10

The wave forces acting on cylinders in row array are
also investigated in present study. Fig. 12 and Fig. 13 show
the wave forces in z-direction acting on cylinders in row
the ~=2a/D the

a,=ay=a;=1 and h/a=10. The wave forces in z-

array  versus ratio for radius
direction on cylinders in column array versus the ratio
v=2a/D is shown in Fig. 14. It is shown that the wave
forces acting on the cylinders reach the maximum value
near y=0.45.

Fig. 15 shows the wave forces in z-direction acting on
cylinders in column array versus the wave number ka for
the radius a, =a,=a; =1, h/a=10, and D/a=5. Fig. 15
shows that the wave force on each cylinder reaches the
maximum values near ka=0.5 and the maximum wave
forces on cylinders in column array extremely higher than

the maximum wave force on single cylinder.
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Fig. 12 Wave forces in x-direction acting on cylinder 1
and cylinder 3 versus ratio v for radius a; =a, =ay =1,
h/a=10
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Fig. 16 Run-up at A and B on cylinder 1 and cylinder 2 in
triangular array for a, =a, =a; =2, h/a=5, D/a=4

Fig. 13 Wave forces in z-direction acting on cylinder 2
versus ratio vy for radius a, =a, =a; =1, h/a=10
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Fig. 14 Wave forces in z-direction acting on cylinders in ka
column array versus ratio v for radius ka=1, Fig. 17 Runup at A and B on cylinder 1 and cylinder 2 in
g =a=a;=1, h/a=10 row array for a, =a,=a;=2, h/a=5, D/a=4
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Fig. 18 Run-up at A, B, C on cylinders in column Fig. 21 Runup at A, B, C on cylinders in row array
array for a, =a,=a; =2, h/a=5, Dia=4 versus ratio v for a; =a, =a; =2, h/a=5, D/a=4
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triangular array versus ratio v for a; =a, =a, =2, Fig. 22 Free-surface elevation contour around cylinders in
hla=35, Dja=4 triangular array for @, =a, =a; =2, h/a=5, D/a=5
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Fig. 20 Runrup at A, B on cylinder 1, cylinder 2 in Fig. 23 ThreeDimensional free-surface elevation around
row array versus ratio vy for a; =a, =a; =2, h/a=5, cylinders in triangular array for a; =a, =a; =2, h/a=75,
Dfa=4 D/a=5
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Fig. 24 Free-surface elevation contour around cylinders in
row array for a, =a, =a, =2, h/a=5, D/a=5

Fig. 25 ThreeDimensional free-surface elevation around
cylinders in row array for e, =a, =a; =2, h/a=35,
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Fig. 26 Freesurface elevation contour around cylinders in
column array for a, =a, =ay; =2, h/a=5, D/a=5
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Fig. 27 Three-Dimensional free-surface elevation around
cylinders in column array for a, =a, =a; =2, h/a=5,
D/a=5

Fig. 19, Fig. 20 and Fig. 21 show the maximum run-up at
A, B and C on cylinders in three different arrays versus the
ratio v=2a/D.

Also in this study, Fig.22 through Fig.27 show the free-
surface elevations for three different arrays at k=0.75,
D/a=5, a)=ay,=a; =2 and h/a=5.

4. Conclusions

The wave forces acting on three vertical circular
cylinders are analyzed by the boundary element method
with Green's second theorem. To verify, the wave force
results obtained in this study are compared with those of
Han and Ohkusu (1995) and those computed by multiple
(Chakrabarti, 1978). The comparisons
show the excellent agreement between the results of this
study and the results of them. Thus, the developed
numerical analysis method with boundary element method

scattering method

is verified.

From the computed results, in column array, as the
separated distance among the cylinders increases, the wave
exciting forces on cylinders in column array reach the
maximum value near = 2a/D=0.45,

Also, the wave run—up on the cylinders in three different
arrays are calculated. In column array, the maximum wave
runrup on the back cylinder extremely lower than the
maximum the maximum wave run-up on the front cylinder
because of the shielding effect.

This numerical computation method will be used broadly
in the design of vertical circular cylinders to be constructed
in coastal zones in the future.
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