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A Prediction Method of Wave Deformation
in Harbors Using the Mild Slope Equation

wOE MY, A M F
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Abstract[ ] Since major reason of disaster in coastal area is wave action, prediction of wave deformation is
one of the most important problems to ocean engineers. Wave deformations are due to physical factors such as
shoaling effect, reflection, diffraction, refraction, scattering and radiation etc. Recently, numerical models are
widely utilizied to calculate wave deformation. In this study, the mild slope equation was used in calculating wave
deformation which considers diffraction and refraction. In order to solve the governing equation, finite element
method is introduced. Even though this method has some difficulties, it is proved to predict the wave deformation
accurately even in complicated boundary conditions. To verify the validity of the numerical calculation, experi-
ments were carried out in a model harbour of rectangular shape which has mild slope bottom. The results by F.E.
M. are compared with those of both Lee's method and the experiment. The results of these three methods show
reasonable agreement.
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INTRODUCTION

Today, goods transportation by ship is rapidly
increasing day by day with the economic devel-
the
amount. Because the decision of harbour loca-

opment and increasing  export—-import

tion has a great effect on urban area near the

harbour, we have to choose the place not to pre-
vent civic development. Also the harbour engi-
neer should consider the harbour resonance in
new harbour planning as well as improvement
and enlargement of old harbours. In the past,
harbours were constructed considering only
harbour resonance. Today, harbour construction

Is not limited in the coast but reached to estu-
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ary zone. Estuary harbour is the best place that
can accommodate the transportation of both
land and water. For harbour planning in estuar-
1al zone, the engineer should consider both wave
action and influx of river water. The problems
of estuary harbour are as follows ;| wave defor-
mation by influx of river water, mutual interfer-
ence of flow, collapse of waterway in bay by a
flow of littoral transport etc. In order to solve
these problems, it is important to intercept inci-
dent wave and to control influx of river water.
It is common to define the harbour resonance
by wave height because wave deformation has
the greatest effect on harbour resonance. To
predict wave height accurately in estuary
harbour, a governing equation that include the
effects of both diffraction and refraction should
be introduced. These effects can be calculated
with mild slope equation.

This kind of papers are presented frequently
in domestic and foreign journal. The wave pre-
diction methods considering refraction and
defraction are well known to coastal engineers,
and these have been verified in applicability and
validity for field application. But the reflection
effect should be considered when the coastal
structure is built in the harbour. In case that the
inflow of river water is blocked by the structure
in estuary harbour, the reflection effect owing
to the coastal structure plays important role in

harbour resonance.

Therefore, in this study, the reflection ratio is

considered in the prediction of harbour
resonance. The reflection ratio was computed in
relation with the incident angle. The prediction
of wave deformation using finite element meth-
suggested.(BETTES : 1977, BEHREN-

DT :1985) Numerical simulation i1s carried out

od is

in a rectangular shape model harbour. The

results are compared with those of both Lee’s

method (LEE : 1970) and hydraulic experiment.

MILD SLOPE EQUATION

Let’s suppose that the fluid is incompressibie
and it’s motion is irrotational. The incidient
wave has amplitude of linear harmonic, propa-
gating on a gentle slope. The wave motion can

be written by the mild slope equation(M.S.E.)

as follows;.
V- (bV7y)+wihn=0, (1)
in which
tanhkh 1 2kh
b=gh ———— = e
&0 2 U sz )=cG
1 2kh
c=— < G,
2 [1+ sinh 2kh ]: C

w?=gk-tanh kh
Where C and Cg are the celerity of progres-
sive wave and group ‘velocity of wave
respectively; g is the acceleration of gravity, »
1s elevation of the surface, h is the depth of

water; and k is the wave number.

BOUNDARY CONDITIONS

Since M.S.E. is an elliptic partial differential
equation, we have to give boundary conditions
to all the perimeters of the region of computa-
tion. As shown in Fig.l,we call the front of
structure I, as a fixed boundry, and a finite
distance from harbour mouth I, as an open

boundary.

Open boundary Condition

It is a half infinite region from the harbour
mouth to the open boundary in a comparatively
simple line coast in shape, where the depth of
outer area R is constant. In the outer area R,
each element of incident wave, reflecting wave,

scattering wave are supposed.
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Fig. 1 Definition of boundaries

Velocity potential components ¢, ¢, ¢5 and
the resultant velocity potential ¢® In area R

may be written as follows;

¢R::¢l+¢r+¢5 (2)
H=-i % ales(g-0') (3
p=i & kalem=(g+6) 4)

where a' is the amplitude of the incident
wave, &', the incident angle, and k, being the re-
ratio. The

scattering wave ¢° satisfies the Sommerfeld’s

flection velocity potential  of

radiation condition as well as the Helmholtz
equation, and may be represented by the follow-

ing analytic series;
(o]
P°= EO H,(k,)[a.cos(nd) + B.sin(nd) (5)
n:

in which @,, B, are unknown complex con-
stants and H, is the Hankel function of the first
kind of order n.

Fixed boundary condition

We assume that both the incident wave and
the reflection wave propagate sing in one direc-
tion. In Fig.1, the velocity potential in region A
i1s ¢* ; velocity potential of incident wave and

reflection wave i1s ¢' and ¢ respectively, we can
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get,
P=g e (6)
¢ =—1e"S(G-G) (7)
¢ =—K.eN(9+4) (8)

The condition which 1s required on the fixed
boundary states that

1 ap
oy r o

—0=0~7m onl| ard I (9

Computation of reflection ratio

By substituting Egs.(6)—(8) into Eq.(9) and
assuming that k, € k,, the reflection ratio may
be calculated as

: w‘?.,é.. 24a4 & 0%

ik 3y +ak?pr + 2 T ox?
Because Eq. (10) produces large error when

=0 (10)

the angle of incidence, & approaches to zero, let’s
define o as surface absorption rate for the con-
nection of the angle of incidence and the reflec-
tion ratio as follows;

. 1-1/2(k,/k)?  14sin?d
a= sind a= 2sind ¢ (a1

Using the reflection ratio kr', we can expres

s " as follows;
. 1-K/

R (12)
. a(l-sin®")-2siné
K= a(l+sin®g") + 2siné (13)
Or
|
j
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Fig.2 Relation Between K, and #(K,=0.0)
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Fig.3 Relation Between K, and &
(K,=0.2, 0.4, 0.6, 0.8)

(1-sind")?-kr(1 +sind")?
(1+sind)%kr(1+sind")?

Fig.2 expresses the relation between K, and
& for K,=0.0. The part of oblique line marked
in the figure is the error caused by the ap-

K=

(14)

proximation. Fig.3 shows the relation between
K/and & for K,= 0.2, 0.4, 0.6, 0.8.

Fig.2 and Fig.3 show the results of the com-
putation in the fixed boundary condition.
Error becomes smaller as the value of reflec-
tion ratio K, increases. This means that the
greatest error arises for K,= 0.0 . There is no
error in case of K,= 0.0 even if & is greater
than 60° Also, in case of #=40° the result

shows good agreement.

DETERMINATION OF FUNCTIONAL

According to the assumption of M.S.E, @(x,
v, Z, t), the complex velocity potential and the
complex amplitude can be written as Eq.(15),
Eq.(16) respectively.

cosh k(z+h)

:¢— -

o cosh kh e ™ (15)
_iw

n= e ] (16)

Total wave complex energy E per horizontal

unit area is

#] (A7)

Complex energy flux E; through the normal

E:ﬁg’— o-EW [cc (V) —2_

direction per hrizontal unit width is

E,:% e 2% jwCC, ¢ ‘9‘75 (18)

The region of computatioion is divided into an
inner region A and an outer region R. A bound-
ary, dA lies on the bounday between A and B,
and oR is an outer boundary of the region of
computation. According to the conservation
equation of total wave energy, a functional is
acquired by

S (EHE)+ | BASH | BRS=0  (19)

l1aR at infinity

iR SRS e

Fig. 4 Region of Computation
in which E, and Ey are the complex wave en-
ergy of the region A and B respectively. E# and
ER are the complex wave energy flux through
the boundary B and dR, and 0S being a line on
the boundary 0B and dR. The complex potential
of the outer region R becomes.

1 R¢R a¢R

So, functional F(¢) used in th)s study 1S given
by

F@@=1§ 1.

2 P awm
Be= g € SaA .952

dS (20)
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DISCRETIZATION OF FUNCTIONAL

To make functional dimensionless, the repre-
sentative length along the horizontal direction is
taken as offshore wave length(L,), while the
representative length of a vertical direction is
taken as the amplitude of the incident wave(a!).
The representative length of the time is used as
the period(T). Because functional F(¢) has the
dimension of mé/s*. Eq.(21) is multiplied by [T/
(L, a")}-(T/L,) )% to make it dimensionless as
follows;

F()=§ §xp(1+G[(L V9=(214)7)
dxdy
+§ —1—42(1+G)[L¢5—(¢ ﬁﬁ‘)]ﬁi—ds
w2 2 A an,
1 _o¢'
-5, TG —ZE—ds

1

3
16 1 ¢

P [—g—i 0 (1+G)ag?+-

o
(1+Gal—7g (22)

where, ¢ =L/L, (L, : wave length in off-
shore), and G =2kh/sinh2kh.
If each term of the dimensionless functinal

)2]dS

F(¢) is discretized, we can get an algebraical
equation given by

F()=2{PMIPT+ S{CAMICI+ +{P]*

[MJCI+ S CHMI+[PI+{QIP]

+[QJ1C]

in which

[M], [M,], [M,] are the element coefficient
determinant, and [Q;],[Q4] being element free

(23)
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term vector.

In the Eq.(23),using the unknown vector {P],
[C], the total unknown vector [¢] can be ex-
pressed as follows;

[¢1=[[P], [C]] (24)

in which {¢] is a row vector having N ele-
ments, and [Q] element free term vector is ex-
pressed by;

[(QI=[[Qs], [Q.]] (25)

Since [Q] is row vector with N elements like
[¢], the determinant[ K] has N x N elements.

According to the stationary condition and
[K7’s symmetricity, we can derive following;

[KI[¢1+[Q]=[0] (26)

Eq.(26) is the algebraic equation we want to
solve. The velocity potential at every nodal
point are solved using Eq.(26).

THE CONDITION OF COMPUTATION
IN APPLICABLE RANGE OF NUMERICAL
ANALYSIS

To verify the result of the numerical solution,
we established a rectangular model harbour of
600m in length and 180m in width as shown in
Fig.5.

Waves in the harbour experience complete re-
flection on the quay, and the constant water
depth is 15m. In a certain place where Lee’s
method has a exact solution, we will verify the
validity of the present method. We computed
two cases that a wave direction is 1959 225°,
270° with periods 75sec, 250 sec. As shown in
Fig.5, the computational area is divided into ele-
ments of 30m in both x, y directions with 324
total element numbers, 193 total nodal points,
12 open boundary element numbers and 48
closed boundary element numbers.
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600m

180m

Fig. 5 Configuration of Model Harbor and Division

of Finite Elememt

COMPARISON WITH LEE’'S METHOD

Fig.6 shows a response curve at P location in
Fig.5 when incidence angles are 195°, 2259, 270
° A vertical axis represents dimensionless value
of the wave height divided by incident wave
height at P location. A horizontal axis repre-
sents dimensionless values of the length of
harbour multiplied by wave number k. The real
line represents the results of computation by
Lee’s method while the dotted line represents
the results of computation by finite element
method. Three cases show that the results of
both computations have good agreement. Also,
the value of H/H, shows peak values when k ¢
1s 1.3 and 4.0.

If free oscillation is assumed to take place
only in y direction of the model harbour, ti = un-
dulation of period T can be obtained from

T=44¢(1+4b/r £ (0.9228+In(xb/2 £ )))"?/

(gh)? (27)

In this case,the value of undulation period T,
T,, are 235.8 sec, 79.18sec In the first, second

(a)
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Fig. 6 Theoretical Frequency Response Curves
(Lee's Method and F.E.M)

mode respectively. In these cases, k ¢ are 1.304
and 3.933, respectively, showing good agree-
ment with the result of computation. The reason
i1s that the length of harbour is long enough
compared with the width of harbour entrance.
According to the result, the value and location

of peak show a little difference because the inci-



dence angle is different in the second mode.
This means that the wave height increases as
the incidence angle increases. In addition, the lo-
cation of peak tends to move toward long peri-
ods(low frequency). This is because the oscilla-
tion of a harbour occurs hardly in the horizontal
direction, but occurs in the vertical direction.
As the incidence angle becomes smaller, the
wave length of horizontal direction becomes
shorter. Consequently, it can be concluded that
the mathematical model of numerical analysis
shows well the physical phenomenon of the
response curve, and good agreement with Lee’s
method. Fig.7, (a), (b) indicate the distribution
of wave height of both method for 195° in inci-
dence angle of the incident wave. In Fig.7, the
number means the value of dimensionless wave
height.

|
L £

(a) (b)
Fig.7 Distribution of Wave Height in a Simple
Harbour(Lee’s Method and F.E.M)
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The real line(FEM), the dotted line(Lee’s
method) are the result of each method. The first
and second mode in T=250sec are shown in
Fig.7 (a) and (b). Although these results show
that a big difference is observed in node, it is
very small compared with the length of the bay.
Moreover, the one-fourth of the wave length in
the first mode and the three—fourth of the wave
length in te second mode in the bay, show well
the physical phenomenon like a response curve.
Both results show good agreement in quantity,
proving that this model is suitable to predict the
distribution of wave height for the case of con-
stant depth and complete reflection.

HYDRAULIC EXPERIMENT

Outline of hydraulic experimentl

In order to compare and examine the distribu-
tion of computed wave height in the model
harbour with experimental results, three dimen-
sional hydraulic experiments were carried out.
We used an outer plane water tank for experi-
ment, having the length of 20m, the width of
5m and the height of 6m and equipped a flap
type wavemaker at one end of the water tank.
Rubbles were placed in both sides and the other
end in front of the breakwater. The model
harbour for three dimensional experiment are
shown In Fig.8.

The incident waves have period T= 0.8, 0.9,
1.0, 1.5, 2.0 sec, with a constant wave height H,
=4.5cm. The angles of incident wave were 270°
and 225° The interval of wave height measure-
ment was 5Scm in the x, y direction, respectively.
The depth of the harbour at the installation
point of incident wave height profiler was 40cm,
and the slope of bottom was kept one—tenth to-
ward the shore.
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Fig. 8 Sketch of Wave Basin and Model

Harbour

Distribution of wave height in longitudinal direc-
tion

Fig.9 is an example that shows the distribu-

3.0 o

tion of wave height. The vertical axis is the
value of dimensionless wave height, the horizon-
tal axis is the value of the length Y/ ¢ . The real
line represents the computed values. The black
crrcles represent the experimented values in
case that the angle of incident wave is 45° The
white circles are the experimented values in
case that the angle of the incident wave is 90°.
There are some discrepancies between the value
of computation and that of theory. The reason
1s that the influence of the incidence wave was
not considered exactly. On the other hand, the
angle of the incident wave affects the distribu-
tion of wave height in the model harbour.

Fig.10 shows free—surface oscillation in the

model harbour computed on the three dimen-
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Fig. 9 Longitudinal Distribution of Wave Height in
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sional plane. At the entrance of the harbour, the
wave height 1s amplified more and more as
transfer into the harbour. The peak value is
shown in the middle of harbour. As time passed
on, the of wave height decreases and the values
of peak occur in front of the quay. The wave
crest arises about at the point of L/4, because a

standing wave is formed in the harour.

Distribution of wave height in cross-sectional
direction

Fig.11 is one example that shows distribution
of wave height in the harbour.

Fig.11 is used as the data for investigating
swaying, heaving and rolling when a ship is an-
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chored. The limit of wave height for safe un-
loading work is computed with the considera-
tion of the influence on the unloading. The real
line represents the computed value, the black
circle represents the value experimented by
Kubo in case that the angle of the incident
wave is 45% while the white circle represents
the experimental value for the angle of the inci-
dent wave 90° Some large differences are
shown between the computed value and the ex-
perimented one. But the differences can de-
crease as the incidence angle is changed. The
wave height distribution in horizontal direction
show strong dependency on wave period T.

Fig. 10 Distribution of Wave Height in Model Harbour(Three Demension)
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Fig. 11 The Cross Sectional Distribution of Wave Height in Model Harbour
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CONCLUSIONS

Wave deformation in a model harbour was
computed introducing finite element method
with mild slope equation. A good agreement
was found when compared with Lee’s method
by finite difference method. In addition, the
hydraulic experiment was conducted to verify
the results of computation. The experimental
results give higher values than those of compu-
tation. The reason is that the influence of the in-
cident wave was not considered enough. But the
proposed numerical method are proved to pre-
dict harbour resonance reasonablely. The limit
of computation region, computing time and
troublesomeness of input information may be

the subjects for further studies.
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