• Title/Summary/Keyword: Bone reaction

Search Result 445, Processing Time 0.033 seconds

Hair follicle development and related gene and protein expression of skins in Rex rabbits during the first 8 weeks of life

  • Wu, Zhenyu;Sun, Liangzhan;Liu, Gongyan;Liu, Hongli;Liu, Hanzhong;Yu, Zhiju;Xu, Shuang;Li, Fuchang;Qin, Yinghe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.477-484
    • /
    • 2019
  • Objective: We aimed to observe hair follicle (HF) development in the dorsal skin and elucidate the expression patterns of genes and proteins related to skin and HF development in Rex rabbits from birth to 8 weeks of age. Methods: Whole-skin samples were obtained from the backs of Rex rabbits at 0, 2, 4, 6, and 8 weeks of age, the morphological development of primary and secondary HFs was observed, and the gene transcript levels of insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF), bone morphogenetic protein 2 (BMP2), transforming growth factor ${\beta}-1$, 2, and 3 ($TGF{\beta}-1$, $TGF{\beta}-2$, and $TGF{\beta}-3$) were examined using quantitative real-time polymerase chain reaction (PCR). Additionally, Wnt family member 10b (Wnt10b) and ${\beta}$-Catenin gene and protein expression were examined by quantitative real-time PCR and western blot, respectively. Results: The results showed significant changes in the differentiation of primary and secondary HFs in Rex rabbits during their first 8 weeks of life. The IGF-I, EGF, $TGF{\beta}-2$, and $TGF{\beta}-3$ transcript levels in the rabbits were significantly lower at 2 weeks of age than at birth and gradually increased thereafter, while the BMP2 and $TGF{\beta}-1$ transcript levels at 2 weeks of age were significantly higher than those at birth and gradually decreased thereafter. ${\beta}$-Catenin gene expression was also significantly affected by age, while the Wnt10b transcript level was not. However, the Wnt10b and ${\beta}$-catenin protein expression levels were the lowest at 2 and 4 weeks of age. Conclusion: Our data showed that a series of changes in HFs in dorsal skin occurred during the first 8 weeks. Many genes, such as IGF-I, EGF, BMP2, $TGF{\beta}-1$, $TGF{\beta}-2$, $TGF{\beta}-3$, and ${\beta}$-Catenin, participated in this process, and the related proteins Wnt10b and ${\beta}$-Catenin in skin were also affected by age.

Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study (계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성)

  • Lee, Yookyung;Kim, Jongsoo;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • The purpose of this study was to investigate the odontoblast gene expression related to the subculture speed of supernumerary dental pulp stem cells (sDPSCs). The stem cell is undifferentiated cells which has the ability to differentiate into various cells. Specific stimulation or environment induces cell differentiation, and these differentiation leads to bone or muscle formation. 20 sDPSCs were obtained from 20 children under aseptic condition. During the culture through the 10th passage, the third passage cells which showed short subculture period and 10th passage cells which showed long subculture period were earned. Each cell was divided into differentiated group and non-differentiated group. Quantitative real-time polychain reaction (q-RT-PCR) was performed for each group. The genes related to odontoblast differentiation, Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osteonectin (ONT), Dentin sialophosphoprotein (DSPP) and Dentin matrix acidic phosphoprotein 1 (DMP-1), were measured. Differentiated cells showed more gene expression levels. Undifferentiated cells showed higher gene expression level in 10th passages but differentiated cells showed higher gene expression level in 3rd passages. Cells that showed faster subculture period showed relatively lower gene expression level except for OCN and DSPP.

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

A Study of Genetic Polymonhisms of HLA-class I and II Genes Using Polymerase Chain Reaction (중합효소연쇄반응을 이용한 HLA-class I, II 유전자군의 유전적 다형성에 관한 연구)

  • Kyung-Ok Lee
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.11-25
    • /
    • 1998
  • The HLA genes located in the short arm of chromosome 6 specify heterodimeric glycoproteins involved in the regulation of the immune response. Recently, in the elucidation of HLA polymorphism, serological and cellular typing methods have been replaced by DNA typing using polymerase chain reaction (PCR). The purpose of this study was to establish the HLA DNA typing methods and determine gene frequencies of HLA molecules in Koreans. PCR-SSP (sequence specific primers) and PCR-RFLP (restriction fragment length polymorphism) techniques were used for the analysis of HLA-A, -B, -C, DRBl genes and HLA-DQAl, DQBl, DPBl genes, respectively. The results of B-lymphoblastoid cells used for control experiment were consistent with the previous data identified in the 11th International Histocompatibility Workshop. Seventeen, 23, 16, 8, 16, 13 and 37 types of HLA-A, B, C, DQAl, DQBl, DPBl and DRBl alleles were found, respectively, in a total of unrelated 120 Korean individuals. The most frequent HLA alleles were $A^*$02 (27.0%), B$^*$40 (17.6%), Cw$^*$01 (19.2%), DQAl$^*$0301 (32.1%), DQBl$^*$0303 (12.9%), DPBl$^*$0501 (31.3%) and DRBl$^*$1501 (9.2%) among Koreans. This study shows that DNA typing method using PCR technique is a relatively simple, fast and practical tool for the determination of the HLA-class I and II genes. Moreover, the data of HLA gene frequencies could be useful for the Korean database before clinical applications, including organ and unrelated bone marrow transplantation, anthropological study, disease association and individual identification.

  • PDF

Effects of rrhGM-CSF on Morphology and Expression of PCNA in Regenerating Rat Liver (재생 중인 흰쥐 간의 형태학적 변화 및 PCNA 발현에 미치는 rrhGM-CSF의 영향)

  • Jeong, Jin-Ju;Heo, Si-Hyun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Lee, Young-Jun;Han, Kyu-Boem;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • Liver regeneration is a result of highly coordinated proliferation of hepatocytes and nonparenchymal liver cells. Partial hepatectomy (PH) is the most often used stimulus to study liver regeneration because, compared with other methods that use hepatic toxins, it is not associated with the tissue injury and inflammation, and the initiation of the regenerative stimulus is precisely defined. Granulocyte macrophage-colony stimulating factor (GM-CSF), which is a cytokine able to regulate the proliferation and differentiation of epithelial cells, was first identified as the most potent mitogen for bone marrow. Particularly, rrhGM-CSF, which is highly glycosylated and sustained longer than any other types of GM-CSF in the blood circulation, was specifically produced from rice cell culture. In this experiment, effects of rrhGM-CSF administration were evaluated in the regenerating liver after 78% PH of rats. Morphological changes induced by PH were characterized by destroyed hepatocyte plate around the central vein and enlarged nuclear cytoplasmic ratio and increased hepatocytes with two nuclei. And then, proliferation of liver cells (parenchymal and nonparenchymal) and rearrangement of plates and lobules seemed to be carried out during liver regeneration. These alterations in the experimental group preceded those of the control. Since proliferating cell nuclear antigen (PCNA) is known to be a nuclear protein maximally elevated in the S phase of proliferating cells, the protein was used as a marker of liver regeneration after PH in rats. PCNA levels by western blot analysis and immunohistology were compared between the two groups. PCNA protein expression of two groups at 12 hr and 24 hr after injury showed similar pattern. The protein expression showed the peak at 3 days in both groups, however, the protein level of the experimental group was higher than that of the control. On immunohistochemical observations, the reaction product of PCNA was localized at the nuclei of proliferating cells and the positive reaction in experimental group at 3 days was clearly stronger than that in control group. The results by Western blotting and immunohistology for PCNA showed similar pattern in terms of the protein levels. In conclusion, rrhGM-CSF administration during liver regeneration after 78% PH accelerated breakdown and restoration of the hepatic plate and expression of PCNA. These results suggest that rrhGM-CSF might play an important role during liver regeneration in rats.

Resorbability and histological reaction of bioabsorbable membranes (수종의 흡수성 차단막의 생체 분해도와 조직학적 반응)

  • Suk, Hun-Joo;Kwon, Suk-Hoon;Kim, Chang-Sung;Choi, Seong-Ho;Jeon, Dong-Won;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.781-800
    • /
    • 2002
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. With the development of non-resorbable membrane, GTR has proved to be the representive technique of periodontal regeneration. However, due to various clinical problems of non-resorbable membrane, resorbable membrane was developed and it showed to be clinically effective. The newly developed Para-Dioxanone membrane has a characteristic of non-woven fabric structures which is different from the generally used membranes with structure of mesh form. In addition, Chitosan membrane has been developed to apply its adventage maximally in GTR. Although a number of different types of membranes had been clinically used, researches on absorption rate of membranes were inadequate and limited to subjective opinions. However, since long term period of resorption and space maintenance are required in implant or ridge augmentation, accurate verification of resorption rate is clinically important. In this study, we had implanted Resolut(R), Biomesh(R), Para-Dioxanone membrane and Chitosan membrane (Size : 4mm ${\times}$ 4mm) on dorsal side of Sprague Dawley rat, and sacrified them after 4 weeks, 8 weeks, 12 weeks respectively. Histologic observation was carried out, and the following results were obtained by calculating the objective resorption rate. 1. In case of Resolut(R), external resorption took place initially, followed by internal resorption. Surface area are 5.76${\pm}$2.37$mm^2$, 4.90${\pm}$l.06$mm^2$, 4.90${\pm}$0.98$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.6${\pm}$4.5%, 52.8${\pm}$9.4%, 56.4${\pm}$5.1% respectively. 2. Biomesh(R) showed a pattern of folding, relatively slow resorption rate with small size of membrane. Surface area are 3.62${\pm}$0.82$mm^2$, 3.63${\pm}$0.76$mm^2$, 4.07${\pm}$1.14$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 26.1${\pm}$5.8%, 30.9${\pm}$3.4%, 29.2${\pm}$3.6%, respectively. 3. Para-Dioxanone membrane was surrounded by fibrous conncetive tissue externally, and resorption took place internally and externally. Surface area are 5.96${\pm}$1.05$mm^2$, 4.77${\pm}$10.76$mm^2$, 3.86${\pm}$0.84$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 30.7${\pm}$5.1%, 53.3${\pm}$4.4%, 69.5${\pm}$3.1%, respectively. 4. Each fiber of Chitosan membrane was surrounded by connective tissue and showed external resorption pattern. It showed little invasion of inflammatory cells and excellent biocompatability. The resorption rate was relatively slow. Surface area are 6.01${\pm}$2.01$mm^2$, 5.49${\pm}$1.3$mm^2$, 5.06${\pm}$1.38$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.3${\pm}$3.6%, 38.4${\pm}$3.80%, 39.7${\pm}$5.6%, respectively. Consequently, Para-Dioxanone membrane and Chitosan membrane are found to be clinically effective for their excellent tissue reaction and biocompatibility. Futhermore, the advantage of bone regenerating ability as well as the relatively long resorption period of Chitosan membrane, it might be widely used in implant or ridge augmentation.

Migration of $^{99m}Tc$-Hexamethylpropylene Amino Oxime (HMPAO) Labeled Immature and Mature Dendritic Cells in the Mouse (마우스에서 Tc-99m HMPAO 표지 미성숙 및 성숙 수지상세포의 이동에 관한 연구)

  • Li, Ming-Hao;Lee, Je-Jung;Min, Jung-Joon;Heo, Young-Jun;Song, Ho-Chun;Park, Young-Kyu;Park, An-Na;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Purpose: The purpose of this study is to evaluate migration of technetium-99m hexamethylpropylene amine oxime ($^{99m}Tc$-HMPAO) labeled immature and mature dendritic cells (DC) in the mouse. Methods: DC were collected from bone marrow (BM) of tibiae and femurs of mice. Immature and mature DC from BM cells were radiolabeled with $^{99m}Tc$-HMPAO. To evaluate the functional and phenotypic changes of DC from radiolabeling, the allogeneic mixed lymphocyte reaction (MLR) and fluorescence-activated cell sorting (FACS) analysis were performed before and after labeling with $^{99m}Tc$-HMPAO. Migration of intravenously injected DC (iv-DC) was assessed by serial gamma camera images of mice with or without subcutaneous tumor. Percent injected dose per gram (%ID/g) was calculated in lungs, liver, spleen, kidneys, and tumor through dissection of each mice after 24 hours of injection. Results: Labeling efficiency of immature and mature DC were $60.4{\pm}5.4%\;and\;61.8{\pm}6.7%$, respectively. Iv-DC initially appeared in the lungs, then redistributed mainly to liver and spleen. Migration of mature DC to spleen was significantly higher than that of immature DC ($38.3{\pm}4.0%\;vs.\;32.2{\pm}4.1%$ in control group, $40.4{\pm}4.1%\;vs.\;35.9{\pm}3.8%$ in tumor group; p<0.05). Migration to tumor was also significantly higher in mature DC than in immature DC ($2.4{\pm}0.3%\;vs\;1.7{\pm}0.2%$; p=0.034). Conclusion: Assessment of migration pattern of DC in mice was possible using $^{99m}Tc$-HMPAO labeled immature and mature DC. Migration of mature DC to spleen and tumor was higher than that of immature DC when they were i.v. injected.

MMP-1 and TIMP-1 production in MG-63 cells stimulated with Prevotella nigrescens Lipopolysaccharide (Prevotella nigrescens lipopolysaccharides로 자극된 MG63 세포에서 분비되는 기질금속단백질 MMP-1과 TIMP-1의 수준에 관한 연구)

  • Yang Won-Kyung;Kim Mi-Ri;Shon Won-Jun;Lee In-Bog;Cho Byeong-Hoon;Um Chung-Moon;Son Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.470-478
    • /
    • 2004
  • The purpose of this study is to monitor the secretion of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) produced by human osteosarcoma cell line (MG63) stimulated with Prevotella nigrescens lipopolysaccharides (LPS). and to compare the level of secretion before and after the treatment of calcium hydroxide on P. nigrescens LPS. LPS was extracted and purified from anaerobically cultured P. nigrescens. MG63 cells were stimulated by the LPS (0, 1, $10{\;}\mu\textrm{g}/ml$) or LPS($10{\;}\mu\textrm{g}/ml$) pretreated with 12.5 mg/ml of $Ca(OH)_2$ for 3 days. Total RNA was isolated from the cell. and real-time quantitative polymerase chain reaction (PCR) was performed for quantification of MMP-1 and TIMP-1. The results were as follows. 1. MMP-1 mRNA expression at 48 hr was highly increased by stimulation with P. nigrescens LPS. The increase was dose-dependent. 2. When stimulated with ($1{\;}\mu\textrm{g}/ml$ of LPS. TIMP-1 mRNA expression was highly increased at 24 hr and 48 hr. However. TIMP-1 expression was suppressed at higher concentration ($10{\;}\mu\textrm{g}/ml$). 3. When P. nigrescens LPS was pretreated with $Ca(OH)_2$. MMP-1 and TIMP-1 gene expression was downregulated. The results of this study suggest that transcriptional regulation of MMP-1 and TIMP-1 by P. nigrescens LPS could be one of the important mechanisms in bone resorption of periapical inflammation. The result of calcium hydroxide on MMP-1 and TIMP-1 gene expression suppression shows that calcium hydroxide detoxified bacterial LPS and thus should be used the medication of choice for intracanal dressings in root canal infected with black-pigmented bacteria.

Estimation of Anti-proliferative Activity of Saccharin against Various Cancer Cell Lines and MSCs (다양한 암세포 주와 MSCs에 대한 Saccharin의 항증식성 평가)

  • Choi, Jeong Su;Park, Sang Yong;Yang, Man Gil;Lee, Dong Beom;Lee, Tae Bok;Heo, Ji Hye;Lee, Min Woo;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Saccharin (o-benzoic sulfimide) is the first artificial and non-caloric sweetener that was first synthesized in 1879. In this study, we examined the biological activity of saccharin against various human cancer cell lines and human bone marrow-derived mesenchymal stem cells. A viability assay based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was performed to test for the cytotoxicity of saccharin about the four human cancer cell lines (H460, H157, A549 and SKOV3), one murine cancer cellline (Raw264.7), and MSCs. In order to find the differentially expressed gene in saccharin-treated MSCs against untreated MSCs, we performed annealing control primer (ACP)-based differential display reverse transcriptionp-olymerase chain reaction (DDRT-PCR). All tested cells were treated with saccharin at various concentrations (0.0, 4.8, 7.2, 9.6, 12.0, 14.4 mg/mL) for 48 hr. The number of metabolically active cancer cells decreased when treated with the saccharin at various concentrations for 48 hr as compared with the untreated cells. The decrease in cell survival was more evident with increasing concentrations of saccharin. Moreover, novel candidate genes, which were differentially expressed in MSCs in response to saccharin, were identified in 16 bands on 2% agarose gel. This revealed 16-7 up-regulated and 9 down-regulated-differentially expressed genes indicated by arrows. One of these candidate genes was a FK506-binding protein gene. The functional roles of FK506 binding proteins, with respect to the activities of stem cell proliferation, were not characterized. Further studies are required to get a better understanding of FK506-binding proteins in its roles in increasing stem cell proliferative activities from using saccharin.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.