DOI QR코드

DOI QR Code

Estimation of Anti-proliferative Activity of Saccharin against Various Cancer Cell Lines and MSCs

다양한 암세포 주와 MSCs에 대한 Saccharin의 항증식성 평가

  • Choi, Jeong Su (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Park, Sang Yong (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Yang, Man Gil (Biomedical Research Institute, Seoul National University) ;
  • Lee, Dong Beom (Central Blood Laboratory Center, Korea Red Cross) ;
  • Lee, Tae Bok (Department of Senior Healthcare, Graduate School, Eulji University) ;
  • Heo, Ji Hye (Department of Clinical Laboratory Science, Donga College of Health) ;
  • Lee, Min Woo (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Kim, Suhng Wook (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University)
  • 최정수 (고려대학교 대학원 의생명융합과학과) ;
  • 박상용 (고려대학교 대학원 의생명융합과학과) ;
  • 양만길 (서울대학교병원 의생명연구원) ;
  • 이동범 (대한적십자사 중앙혈액검사센터) ;
  • 이태복 (을지대학교 대학원 시니어헬스케어학과) ;
  • 허지혜 (동아보건대학교 임상병리과) ;
  • 이민우 (고려대학교 대학원 의생명융합과학과) ;
  • 김성욱 (고려대학교 대학원 의생명융합과학과)
  • Received : 2016.05.01
  • Accepted : 2016.06.07
  • Published : 2016.09.30

Abstract

Saccharin (o-benzoic sulfimide) is the first artificial and non-caloric sweetener that was first synthesized in 1879. In this study, we examined the biological activity of saccharin against various human cancer cell lines and human bone marrow-derived mesenchymal stem cells. A viability assay based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was performed to test for the cytotoxicity of saccharin about the four human cancer cell lines (H460, H157, A549 and SKOV3), one murine cancer cellline (Raw264.7), and MSCs. In order to find the differentially expressed gene in saccharin-treated MSCs against untreated MSCs, we performed annealing control primer (ACP)-based differential display reverse transcriptionp-olymerase chain reaction (DDRT-PCR). All tested cells were treated with saccharin at various concentrations (0.0, 4.8, 7.2, 9.6, 12.0, 14.4 mg/mL) for 48 hr. The number of metabolically active cancer cells decreased when treated with the saccharin at various concentrations for 48 hr as compared with the untreated cells. The decrease in cell survival was more evident with increasing concentrations of saccharin. Moreover, novel candidate genes, which were differentially expressed in MSCs in response to saccharin, were identified in 16 bands on 2% agarose gel. This revealed 16-7 up-regulated and 9 down-regulated-differentially expressed genes indicated by arrows. One of these candidate genes was a FK506-binding protein gene. The functional roles of FK506 binding proteins, with respect to the activities of stem cell proliferation, were not characterized. Further studies are required to get a better understanding of FK506-binding proteins in its roles in increasing stem cell proliferative activities from using saccharin.

Saccharin (o-benzoic sulfimide)은 1879년에 최초로 합성된 열량이 없는 인공감미료이다. 본 연구에서, 우리는 다양한 인간 암세포주와 인간 골수에서 유래한 중간엽 줄기세포에 대한 saccharin의 생물학적 활성을 실험해보고자 한다. 4가지 인간 암세포주(H460, H157, A549, SKOV3)와 쥐암세포(Raw264.7) 그리고 인간 골수 유래 중간엽 줄기세포에 대한 세포 viability assay는 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)의 변환을 기초하여 세포독성을 실험하였다. Saccharin을 처리하지 않은 세포와 대조적으로 saccharin을 처리한 세포에서 발현 양상이 달라지는 gene을 찾기 위해, 우리는 ACP를 기초로 한 DDRT-PCR을 시행하였다. 모든 실험에 사용된 세포들은 각기 다양한 saccharin 농도로(0.0, 4.8, 7.2, 9.6, 12.0, 14.4 mg/mL) 48시간 동안 처리되었다. 그 결과, 48시간 동안 다양한 saccharin 농도로 처리되면서 saccharin 처리를 하지 않은 암세포보다 saccharin 처리를 한 암세포에서 대사활성을 지닌 세포의 수가 감소하는 것을 확인할 수 있었고, 이런 세포 증식의 감소는 농도가 증가함에 따라 더욱 두드러졌다. 그리고 saccharin에 대한 반응으로 MSCs에 다른 양상으로 발현이 되는 주목할만한 gene 후보군이 2% agarose gel 상에 16개 밴드로 나타났고, 7개는 발현이 증가, 9개는 발현이 감소한 gene으로 보였다. 이 후보군중 하나는 FK506 binding protein gene이다. 이 단백질이 줄기세포의 생장활성에 어떠한 역할을 하고 있는지는 명확하지 않고 saccharin의 줄기세포 증식 활성 증가에 대한 FK506 binding protein의 자세한 기능은 추후 더 연구가 필요하다.

Keywords

References

  1. Tandel KR. Sugar substitutes: health controversy over perceived benefits. J Pharmacol Pharmacother. 2011;2:236-243. https://doi.org/10.4103/0976-500X.85936
  2. Whitehouse CR, Boullata J, McCauley LA. The potential toxicity of artificial sweeteners. AAOHN J. 2008;56:251-259. https://doi.org/10.1177/216507990805600604
  3. Mitchell H. Sweeteners and sugar alternatives in food technology. 1st ed. Oxford: Blackwell; 2006.
  4. Schardt D. Sweet nothings. Nutr Act. 2004;9:8-11.
  5. Kim HJ, Kim DI, Yon JM. Effects of Jerusalem artichoke (Helianthus tuberosus L.) extracts on blood glucose and lipid metabolism in STZ-induced diabetic rats. Korean J Clin Lab Sci. 2015;47(4):203-208. https://doi.org/10.15324/kjcls.2015.47.4.203
  6. Yoon KN, Jang HS, Jin GH. Antioxidant, anti-diabetic, anti-cholinesterase, and nitric oxide inhibitory activities of fruiting bodies of Agaricus brasiliensis. Korean J Clin Lab Sci. 2015;47(4):194-202. https://doi.org/10.15324/kjcls.2015.47.4.194
  7. Zurlo J, Squire RA. Is saccharin safe? Animal testing revisited. J Natl Cancer Inst. 1998;90:2-3. https://doi.org/10.1093/jnci/90.1.2
  8. Turner SD, Tinwell H, Piegorsch W, Schmezer P, Ashby J. The male rat carcinogens limonene and sodium saccharin are not mutagenic to male Big Blue rats. Mutagenesis. 2001;16: 329-332. https://doi.org/10.1093/mutage/16.4.329
  9. Assumpcao MHMT, Medeiros RA, Madi A, Fatibello-Filho O. Development of a biamperometric procedure for the determination of saccharin in dietary products. Quimica Nova. 2008;31:1743-1746. https://doi.org/10.1590/S0100-40422008000700028
  10. Food and Agriculture Organization; International Programme on Chemical Safety. Summary of evaluations performed by the Joint Expert Committee on Food Additives. Geneva: ILSI Press; 1999.
  11. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques. 2004;36:424-434. https://doi.org/10.2144/04363ST02
  12. Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature. 1989; 341:758-760. https://doi.org/10.1038/341758a0
  13. Siekierka JJ, Staruch MJ, Hung SH, Sigal NH. FK-506, a potent novel immunosuppressive agent, binds to a cytosolic protein which is distinct from the cyclosporin A-binding protein, cyclophilin. J. Immunol. 1989;143:1580-1583.
  14. Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL. Probing immunosuppressant action with a non-natural immunophilin ligand. Science. 1990;250:556-559. https://doi.org/10.1126/science.1700475
  15. Sigal NH, Dumont FJ. Cyclosporin A, FK-506 and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol. 1992;10:519-560. https://doi.org/10.1146/annurev.iy.10.040192.002511