Effects of rrhGM-CSF on Morphology and Expression of PCNA in Regenerating Rat Liver

재생 중인 흰쥐 간의 형태학적 변화 및 PCNA 발현에 미치는 rrhGM-CSF의 영향

  • 정진주 (순천향대학교 생명과학과) ;
  • 허시현 (순천향대학교 생명과학과) ;
  • 김지현 (순천향대학교 생명과학과) ;
  • 윤광호 (순천향대학교 생명과학과) ;
  • 이영준 (차바이오앤디오스텍(주)) ;
  • 한규범 (차바이오앤디오스텍(주)) ;
  • 김완종 (순천향대학교 생명과학과)
  • Received : 2010.04.20
  • Accepted : 2010.06.16
  • Published : 2010.06.30

Abstract

Liver regeneration is a result of highly coordinated proliferation of hepatocytes and nonparenchymal liver cells. Partial hepatectomy (PH) is the most often used stimulus to study liver regeneration because, compared with other methods that use hepatic toxins, it is not associated with the tissue injury and inflammation, and the initiation of the regenerative stimulus is precisely defined. Granulocyte macrophage-colony stimulating factor (GM-CSF), which is a cytokine able to regulate the proliferation and differentiation of epithelial cells, was first identified as the most potent mitogen for bone marrow. Particularly, rrhGM-CSF, which is highly glycosylated and sustained longer than any other types of GM-CSF in the blood circulation, was specifically produced from rice cell culture. In this experiment, effects of rrhGM-CSF administration were evaluated in the regenerating liver after 78% PH of rats. Morphological changes induced by PH were characterized by destroyed hepatocyte plate around the central vein and enlarged nuclear cytoplasmic ratio and increased hepatocytes with two nuclei. And then, proliferation of liver cells (parenchymal and nonparenchymal) and rearrangement of plates and lobules seemed to be carried out during liver regeneration. These alterations in the experimental group preceded those of the control. Since proliferating cell nuclear antigen (PCNA) is known to be a nuclear protein maximally elevated in the S phase of proliferating cells, the protein was used as a marker of liver regeneration after PH in rats. PCNA levels by western blot analysis and immunohistology were compared between the two groups. PCNA protein expression of two groups at 12 hr and 24 hr after injury showed similar pattern. The protein expression showed the peak at 3 days in both groups, however, the protein level of the experimental group was higher than that of the control. On immunohistochemical observations, the reaction product of PCNA was localized at the nuclei of proliferating cells and the positive reaction in experimental group at 3 days was clearly stronger than that in control group. The results by Western blotting and immunohistology for PCNA showed similar pattern in terms of the protein levels. In conclusion, rrhGM-CSF administration during liver regeneration after 78% PH accelerated breakdown and restoration of the hepatic plate and expression of PCNA. These results suggest that rrhGM-CSF might play an important role during liver regeneration in rats.

Granulocyte macrophage-colony stimulating factor (GM-CSF)는 과립구 및 대식세포뿐만 아니라 상피세포의 증식과 분화를 자극하는 당단백질이며, 최근 생산된 벼세포 유래 재조합 GMCSF(rrhGM-CSF)는 감염원으로부터 안전하고 당사슬이 매우 풍부하여 물질의 안정성 혹은 효과의 지속성을 높여 주는 것으로 알려졌다. 본 실험에서는 간 재생 능력이 우수한 흰쥐를 실험모델로 하여 간의 78%를 제거한 후, 간 재생을 유도하는 과정에서 rrhGM-CSF를 처리하고, 시간 경과에 따라 형태변화의 차이와 더불어 단백질 발현 분석법과 면역조직화학법을 이용하여 PCNA 발현에 미치는 효과에 대해서 알아보고자 하였다. rrhGMCSF는 간 재생 속도를 뚜렷이 증가시키지는 못하였으나, 대조군에 비해 실험군에서는 재생 초기에 간 세포판의 붕괴와 재구성 시기를 다소 앞당기는 것으로 관찰되었다. 증식 중인 세포에서 증가하는 것으로 알려져 있는 핵단백질인 proliferating cell nuclear antigen (PCNA)의 간 조직에서의 분포와 발현 정도를 보면 부분간절제 후 12시간과 24시간에서는 PCNA 단백질이 두 그룹에서 조금씩 발현되다가 간 절제 3일과 5일이 경과한 실험군에서 단백질이 높게 발현되었다. 간 재생이 진행될수록 간 조직 전체에서 고르게 PCNA 양성반응이 나타났으며, 대조군 보다 실험군에서 반응성이 더 뚜렷한 것으로 나타났다. 이러한 결과들로 보아 부분 간절제 후 간 재생을 유도하는 과정에서 rrhGM-CSF가 세포분열을 촉진시키는 인자들 중의 하나로 작용하여 간 재생에 효과를 나타낼 수 있을 것으로 사료된다.

Keywords

References

  1. Assy N, Gong Y, Zhang M, Pettigrew NM, Pashniak D, Minuk GY: Use of proliferating cell nuclear antigen as a marker of liver regeneration after partial hepatectomy in rats. J Lab Clin Med 131 : 251-256, 1998. https://doi.org/10.1016/S0022-2143(98)90097-X
  2. Barreda DR, Hanington PC, Belosevic M: Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28 : 509-554, 2004. https://doi.org/10.1016/j.dci.2003.09.010
  3. Bucher NLR: Regeneration of mammalian liver. Int Rev Cytol 15 : 245-300, 1963. https://doi.org/10.1016/S0074-7696(08)61119-5
  4. Choi BH, Ha Y, Park HS, Yoon SH, Park HC, Min BH, Park SR: Application of GM-CSF for the repair of spinal cord injury. Tissue Eng Regen Med 3 : 21-26, 2006. (Korean)
  5. Clark SC: Biological activities of human granulocyte-macrophage colony-stimulating factor. Int J Cell Cloning 6 : 365-377, 1988. https://doi.org/10.1002/stem.5530060602
  6. Fausto N: Liver regeneration. J Hepatol 32 : 19-31, 2000.
  7. Fausto N, Laird AD, Webber EM: Role of growth factors and cytokines in hepatic regeneration. FASEB J 9 : 1527-1536, 1995. https://doi.org/10.1096/fasebj.9.15.8529831
  8. Garcia RL, Coltrera MD, Gown AM: Analysis of proliferative grade using anti PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Am J Pathol 134 : 733-739, 1989.
  9. Gasson JC, Fraser JK, Nimer SD: Human granulocyte-macrophage colony-stimulating factor (GM-CSF): regulation of expression. Prog Clin Biol Res 338 : 27-41, 1990.
  10. Hall P, Levison DA, Woods AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP: Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162 : 285-294, 1990. https://doi.org/10.1002/path.1711620403
  11. Higgins GM, Anderson RM: Experimental pathology of the liver. I. Restoration of the liver of the white rat following surgical removal. Arch Pathol 12 : 186-202, 1931.
  12. Ji Y, Dahmen U, Madrahimov N, Madrahimova F, Xing W, Dirsch O: G-CSF administration in a small-for-size liver model. J Invest Surg 22 : 167-177, 2009. https://doi.org/10.1080/08941930802713027
  13. Kim HJ, Lee DH, Kim DK, Han GB, Kim HJ: The glycosylation and in vivo stability of human granulocyte-macrophage colonystimulating factor produced in rice cell. Biol Pharm Bull 31 : 290-294, 2008. https://doi.org/10.1248/bpb.31.290
  14. Kubota T, Takabe K, Yang M, Sekido H, Endo I, Ichikawa Y, Togo S, Shimada H: Minimum sizes for remnant and trasplanted livers in rats. J Hep Bil Pancr Surg 4 : 398-404, 1997. https://doi.org/10.1007/BF02488972
  15. Michalopoulos GK: Liver regeneration. J Cell Physiol 213 : 286-300, 2007. https://doi.org/10.1002/jcp.21172
  16. Miyachi K, Fritzler MJ, Tan EM: Autoantibody to a nuclear antigen in proliferating cells. J Immunol 121 : 2228-2234, 1978.
  17. Mourella M, Rubalcava B: Regeneration of the liver after carbon tetrachloride. J Biol Chem 256 : 1656-1660, 1981.
  18. Ogata K, Kurki P, Celis JE, Nakamura RM, Tan E: Monoclonal antibodies to a nuclear protein (PCNA/cyclin) associated with DNA replication. Exp Cell Res 168 : 475-486, 1987. https://doi.org/10.1016/0014-4827(87)90020-6
  19. Tanno M, Taguchi T: Proliferating cell nuclear antigen in normal and regenerating rat livers. Exp Mol Pathol 67 : 192-200, 1999. https://doi.org/10.1006/exmp.1999.2281
  20. Theocharis SE, Papadimitriou LJ, Retsou ZP, Margeli AP, Ninos SS, Papadimitriou JD: Granulocyte-colony stimulating factor administration ameliorates liver regeneration in animal model of fulminant hepatic failure and encephalopathy. Dig Dis Sci 48 : 1797-1803, 2003. https://doi.org/10.1023/A:1025463532521
  21. Thorgeirsson SS: Hepatic stem cell in liver regeneration. FASEB J 10 : 1249-1256, 1996. https://doi.org/10.1096/fasebj.10.11.8836038
  22. Xu CS, Chang CF, Yuan JY, Li WQ, Han HP, Yang KJ, Zhao LF, Li YC, Zhang HY, Rahman S, Zhang JB: Expressed genes in regenerating rat liver after partial hepatectomy. World J Gastroenterol 11 : 2932-2940, 2005. https://doi.org/10.3748/wjg.v11.i19.2932