• Title/Summary/Keyword: Bone contact

Search Result 381, Processing Time 0.03 seconds

THE EXPERIMENTAL STUDY ON BONE HEALING AROUND TITANIUM IMPLANTS PLACED IN IRRADIATED RAT'S TIBIAE (방사선 조사 백서 경골에 티타늄 임플랜트 매식후 골 치유에 관한 연구)

  • Kwak, Byung-Hak;Kim, Jong-Ryoul;Park, Bong-Soo;Shin, Sang-Hoon;Sung, Iel-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.6
    • /
    • pp.379-391
    • /
    • 2003
  • The present study was undertaken to evaluate bone regenerative capacity around titanium screw implants placed in irradiated rat's tibiae. At one week after single 15-Gy dose irradiation, miniaturized titanium screw implants were inserted into anterior aspect of the upper tibia of rats weighing 200-250g. Seventy rats were involved: 35 rats were control and 35 rats radiation group. The rats were killed at different intervals as 1, 2, 3, 4, 6, 8, 12 weeks after implantation for histologic observation, histomorphometric analysis and immunohistochemical study with fibronectin and CD34 antibody. 1. Histologically, various stages of bone maturation and ossification can be seen at 4 weeks and regenerated bone close to edges demonstrates more advanced calcification, and network of new bone are well formed at 12 weeks in non-irradiated group. In contrast, active bone formation with increased contact of newly formed bone to implant surface was noted at 4 weeks and a significant amount of new bone formation and bone-implant contact is oberved at 12 weeks in irradiated group. 2. Histomorphometrical analysis confirmed these histologic findings. A significant difference in implant-bone contact and bone density was measured between the control and radiation group. Mean MBD was 62.2% in control group and 27.5% in radiation group, mean MBIC was 86.6% in control group and 47.7% in radiation group, and mean TBIC was 87.3% in control group and 45.6% in radiation group at 12 weeks after implantation. 3. In immunohistochemical study with fibronectin and CD34, radiation reduced hematopoietic progenitor cells severely and disturbed differentiation of osteoblast in bone marrow. The results of this study revealed bone healing capacity around implant after radiation therapy was severely impaired and irradiation reduces the capacity for osseointegration of titanium implants. Many factors including radiation dose, period between radiation and implantation, bone quality, time elapse between first and second surgery, type of prosthetics and hyperbaric oxygen therapy must be considered carefully in postradiation implantation.

EFFECTS OF HYDROXYAPATITE AND TITANIUM-COATED DENTAL IMPLANTS ON BONE FORMATION AND MATURATION IN DOG (성견에서 수산화인산염 피개 IMZ임플란트와 티타늄 피개 IMZ임플란트주위의 골형성 및 골성숙 정도에 대한 비교연구)

  • Yoon, Hong-Cheol;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.317-334
    • /
    • 1995
  • The purpose of this study was to compare the bone formation, maturation around HA-and titaniumcoated dental implants in dog. 5 hydroxyapatite coated IMZ implants and 5 titanium coated IMZ implants were placed into the previously extracted site in the mandible of 5 adults dogs. All dogs were injected intravenously Tetracycline, Alizalin red S, and Calcein for bone fluorescent labelling, After the experimental period of 16weeks, the dogs were sacrificed and tissue samples around the implants were obtained. Microscopic observations(ligth, polariged and fluorescence microscope), morphometric analysis, line profile with EPMA, and quantitative analysis for Ca,P, and Ti were performed. The results were as follows ; 1. Bone maturations around the implants were relatively lower than those of natural teeth. No significant differences in bone maturation and remodeling patterns were observed between the two implants groups. 2. Calcification of bone surrounding the implants was initiated in 8-11 weeks for HA-coated implants, while it took 11 weeks or more for Ti-coated implants. 3. Bone-to-implants contact ratio of 82.63% was recorded for HA-coated group and 72.25% for titanium coated group, with no significant difference between the two groups. 4. Bone around the implants exhibited reduced quantity of Ca and P in the $100{\mu}m$ region relative to natural teeth, while the rest of the regions showed no statistical differences. No significant differences were found between the two implant groups. 5. There was a separation of HA layer from the implant core and subsequent infiltration of inflammatory cells into the resulting space in the HA-coated implants, and evidences of phagocytosis of HA particles by macrophages. Bone calcification was more rapid around HA-coated implants compared to titanium-coated implants, but HA coated implants did not show any significant differences either in the degree of calcification or the bone-to-implant contact ratio over Ti coated implants. HA coated implants may have complications associated with HA absorption and separation of HA layer from the implant core.

  • PDF

The relationship between initial implant stability quotient values and bone -to-implant contact ratio in the rabbit tibia

  • Park, In-Phill;Kim, Seong-Kyun;Lee, Shin-Jae;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.76-80
    • /
    • 2011
  • PURPOSE. Implant stability quotient (ISQ) values have been supposed to predict implant stability. However, the relationship between ISQ values and bone-to-implant contact ratio (BIC%) which is one of the predictors of implant stability is still unclear. The aim of the present study was to evaluate initial ISQ values in relation to BIC% using rabbit model. MATERIALS AND METHODS. Four New Zealand white rabbits received a total of 16 implants in their tibia. Immediately after implant placement ISQ values were assessed. The measurements were repeated at the time of sacrifice of the rabbits after 4 weeks. Peri-implant bone regeneration was assessed histomorphometrically by measuring BIC% and bone volume to total volume values (bone volume %). The relationships between ISQ values and the histomorphometric output were assessed, and then, the osseointegration prediction model via the initial ISQ values was processed. RESULTS. Initial ISQ values showed significant correlation with the BIC%. The bone volume % did not show any significant association with the ISQ values. CONCLUSION. In the limitation of this study, resonance frequency analysis is a useful clinical method to predict the BIC% values and examine the implant stability.

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won;Lee, Woo-Jin;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

BONE RESPONSE OF THREE DIFFERENT SURFACE IMPLANTS : HISTOMORPHOMETRIC, PERIO TEST VALUE AND RESONANCE FREQUENCY ANALYSIS IN BEAGLE DOGS

  • Choi, Joon-Eon;Suh, Kyu-Won;Lee, In-Ku;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.362-374
    • /
    • 2007
  • Statement of problem. The intial stability for osseointegration of implant has been an interesting factor. Especially, in the case of poor bone quality or immediately loaded implant, various strategies have been developed focusing on the surface of materials to improve implant fixation to bone. The microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Purpose. The aims of this study are to perform a histologic and histomorphometric comparison of the healing characteristics of three different surfaces and the comparison of resonance frequency analysis (RFA) values measured by $Osstell^{TM}$ and perio-test values (PTV) measured by Periotest. Material and methods. A total of 24 screw titanium implants (Dentium Co., Seoul, Korea) with 6mm in length and 3.4mm in diameter, were placed in the mandible of 4 beagle dogs. Implants were divided into three groups following the surface treatment methods: Group I is machined(control group). Group II is anodically oxidized. Group III is coated 500nm in thickness with hydroxyapatite(HA) by ion beam assisted deposition(IBAD) on the anodized oxidization. Bone blocks from 2 dogs were caught after 3 weeks of covered healing and another blocks from 2 dogs after 6 weeks. RFA values and PTV were measured right after insertion and at 3 and 6weeks. Histomorphometric analysis was made with Kappa Image Base System to calculate bone-to-implant contact (BIC) and bone area inside the threads. Pearson's correlation analyses were performed to evaluate the correlation between RFA and PTV, BIC and bone area ratio of three different surfaces at 3 and 6 weeks. Results. 1) In all surface treatment methods, the RFA values decreased and the PTV values increased until 6 weeks in comparison to initial values. 2) At 3 weeks, no significant difference was found from bone-to-implant contact ratio and bone area ratio of three different surface treatment methods(P>0.05). However, at 6 weeks, different surface treatment methods showed significantly different bone-toimplant contact ratio and bone area ratio(P<0.05). 3) In the implants with the IBAD on the anodic oxidization, significant difference was found between the 3 weeks and the 6 weeks bone area ratio(P<0.05). 4) Correlation was found between the RFA values and the bone area ratio at 3 and 6 weeks with significant difference(P<0.05). Conclusions. These results indicate that the implants with the IBAD on the anodic oxidization may have a high influence on the initial stability of implant.

A Simple Surgical Guide for Horizontal Bone Graft: A Technical Note

  • Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.90-92
    • /
    • 2016
  • Horizontal bone defect in the anterior maxilla makes it difficult to place dental implant. The golden standard for bone augmentation is autogenous block bone graft. Tight contact with recipient site and rigid fixation are two key factors for successful block bone graft. Ramal bone graft has been the most reliable methods for dental implant field. However, the curvature of the alveolar ridge is different from ramal bone shape. Intraoperative trimming of ramal bone is cumbersome for surgeon. In this technical note, a simple way to design the ramal bone harvest using bone wax stent is reviewed.

A STUDY OF BONE APPOSITION AND MARGINAL ALVEOLAR BONE LOSS AROUND IMMEDIATE IMPLANSTS (발치 직후 매식 임프란트의 골침착과 변연골 상실에 대한 연구)

  • Jun, Chul-Oh;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.165-180
    • /
    • 1997
  • The purpose of this study was to observe bone apposition and marginal bone loss and to check the possibility of success on titanium implant, HA coated implant and the implant with natural coral that were place immediately after teeth extraction in dogs. Experimental subjects were divided into 4 groups ; the 1st group is the titanium implant, second the HA coated implant, third the implant with natural coral, and the last the control group that was prepared in the extraction sockets. After 12 weeks, the dogs were sacrificed for visual observation and microscopic examination approaching histologic and histomorphometric analysis. The results were as follows : 1. Neither the infection nor the exposure of implant was found at the sites of all implant. 2. In a histomorphometric analysis, mean percentage of direct bone contact with the titanium implant was 80.7% and the HA coated implant showed 81.5% apposition, but the implant with natural coral showed 64.9% apposition(P<0.05). 3. In a microscopic examination, mature lamellated bone was found around the immediate implants and control group, while unabsorbed natural coral around the immediate implants with natural coral was found. 4. All immediate implant groups showed the loss of marginal bone in order from implant with natural coral, titanium implant, and HA coated implant. 5. Implant with natural coral that was placed by the type I interface of the Barzilay's classification immediately after teeth extraction showed low percentage of direct bone contact area, low success rate and a lot of marginal bone loss. Above results suggested that the immediate implants are osseointegrated successfully, although slightly marginal bone was loss.

  • PDF

A STUDY ON THE BONE FORMATION OF OPEN TYPE AND CLOSED TYPE IMPLANTS (개방형과 폐쇄형 임플랜트 매식후 주위골 형성에 관한 실험적 연구)

  • Kim Jeong-Ho;Yang Jae-Ho;Chung Hun-Young;Lee Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.573-592
    • /
    • 1994
  • A two-stage procedure is ideal for getting a successful osseointegration. But if a one-stage procedure can achieve a similar osseointegration, the one-stage procedure has several advantages. The purpose of this study was to observe the initial bone formation and bone remodeling of open type (nonsubmerged) and closed type (submerged) titanium implants. Eight ITI hollow-screws and eight Branemark fixtures were divided into two groups (submerged and nonsubmerged) and were installed on the lower jaws of four mongrel dogs. The animals were sacrificed three months later and bone sections with implants were processed for light microscopic and fluorescent microscopic observation. The results were as follows : 1 There was no significant difference in bone-to-implant contact between submerged and nonsubmerged implants. 2. Smooth surface titanium implants showed more bone-to-implant contact than that of titanium plasma coated implants histologically. 3. Under fluorescent microscopy, the active bone remodeling and new bone formation were observed in the interface zone. 4. Under fluorescent microscopy, submerged and nonsubmerged implants had no difference in bone remodeling pattern, and intramembranous bone formation was more prominent. 5. The connective tissue fibers orienting perpendicularly toward implant surface were oberved in the neck of implants.

  • PDF

Effects of electrical stimulation on healing of endo-osseous titanium implants in circumferential defect (전기자극이 성견 골결손부에 매식된 임플란트 주위조직의 치유에 미치는 영향)

  • Shim, Jae-Chang;Kim, Young-Jun;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.177-193
    • /
    • 2004
  • Several experimental studies showed that the application of small amounts of electric current to bone stimulated osteogenesis at the site of the cathode and suggested that electrical currents promote osseointegration around dental implants. The purpose of this study was to determine the effect of direct microcurrent to endosseous titanium implants placed in bone defects. The right and left 2nd, 3rd and 4th mandibular premolars in ten mongrel dogs (15Kg of weight) were extracted. One monthe later, Ti-machined screw type implants(3.8 mm diameter x 8.5 mm length, $AVANA^{(R)}$, Ostem) were placed in surgically created circumferential defect area(width 5mm, depth 4mm). The implants were divided into three groups according to the treatment modalities: Control group- implants without electrical stimulation; Experimental group I- implants with allogenic demineralized freeze dried bone grafting; and Experimental group II-implants allogenic demineralized freeze dried bone grafting and electric stimulation. The animals were sacrificed in the 4th and 8th week after implant placement and un-decalcified specimens were prepared for histological and histometrical evaluation of bone-implant contact ratio (BIC) and bone formation area ratio (BFA) in defect area. Some specimens at 8 weeks after implantation were used for removal torque testing. Histologically, there was connective tissue infiltration in the coronal part of defect area in control and the experimental group I, whereas direct bone contact was found in the experimental group II without connective tissue invasion. Average BIC ratios at 4 weeks of healing were 60.1% in the experimental group II, 47.4% in the experimental group I and 42.7% in the control. Average BIC ratios at 8 weeks after implantation were 67.6% in the experimental group II, 55.9% in the experimental group I and 54.6% in the control. The average BFA ratio was 84.0% in the experimental group II, 71.8% in the experimental group I and 58.8% in the control at 4 weeks, and the BFA ratios were 89.6% in the experimental group II, 81.4% in the experimental group I and 70.5% in the control at 8 weeks after implantation. The experimental group II showed also significantly greater BIC and BFA ratios compared to the control and the experimental group I (p<0.05). The removal torque values at 8 weeks after implantation were 56 Ncm in the experimental group II, 49 Ncm in the experimental group I and 43 Ncm in the control. There was a statistically significant difference among 3 groups (p<0.05). These results suggest that electrical stimulation improve and accelerate bone healing around endosseous titanium implants in bone defect.

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF