• Title/Summary/Keyword: Bone Development

Search Result 1,082, Processing Time 0.029 seconds

DEVELOPMENT OF MOLDABLE BONE REGENERATING THERAPEUTICS USING PARTIALLY PURIFIED PORCINE BONE MORPHOGENETIC PROTEIN AND BIORESORBABLE POLYMER (Poly(L-lactide)와 돼지골기질에서 추출 부분정제한 골형성단백을 이용한 조형가능성 골형성유도체의 개발)

  • Lee, Jong-Ho;Chung, Chong-Pyung;Lee, Sung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2000
  • The purpose of this study was to develop an osteogenic, biodegradable material using polymer and BMP. It was designed to have structural function and be moldable, for the reconstruction of load bearing areas and deformities of various configurations. Bone apatite was added to Poly(L-lactide)(PLLA) and made porous for osteoconductability and ease of BMP loading. The materials, with or without BMP purified from porcine bone matrix, were evaluated in cranial bone defect models in rats for biocompatibility and bone regeneration capability. The following results were obtained: The PLLA-BMP material with BMP added to the polymer showed 30% healing of cranial bone defects in rats during the 2 weeks to 3 months period of observation. The moldable PLLA agent without BMP also showed 25% bone healing capacity. Although new bone formation was incomplete in the critical size defect of rat cranium, it can be concluded that the unique moldability of those agents makes them useful for the reconstruction of various bone defects and maxillofacial deformities.

  • PDF

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.

Fibrous Dysplasia with Aneurysmal Bone Cyst Presenting as Painful Solitary Skull lesion

  • Lee, Jung-Won;Kim, Jae-Hoon;Han, Seung-Hoon;Kang, Hee-In
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.6
    • /
    • pp.551-554
    • /
    • 2010
  • We report a rare case of fibrous dysplasia with the development of a secondary aneurysmal bone cyst presenting as solitary tumor of calvarium. Although fibrous dysplasia with aneurysmal bone cyst is rare, it should be taken into account in differential diagnosis of the osteolytic solitary skull lesion.

The Effect of Silk Fibroin/Nano-hydroxyapatite/Corn Starch Composite Porous Scaffold on Bone Regeneration in the Rabbit Calvarial Defect Model (가토 두개골 결손 모델에서 실크단백과 나노하이드록시아파타이트, 옥수수 녹말 복합물을 이용한 골 이식재 개발)

  • Park, Yong-Tae;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Seong-Gon;Kim, Chan-Woo;Jo, You-Young;Kweon, Hae-Yong;Kang, Seok-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.6
    • /
    • pp.459-466
    • /
    • 2011
  • Purpose: This study evaluated the capability of bone formation with silk fibroin/nano-hydroxyapatite/corn starch composite scaffold as a bone defect replacement matrix when grafted in a calvarial bone defect of rabbits $in$ $vivo$. Methods: Ten New Zealand white rabbits were used for this study and bilateral round-shaped defects were formed in the parietal bone (diameter: 8.0 mm). The silk fibroin 10% nano-hydroxyapatite/30% corn starch/60% composite scaffold was grafted into the right parietal bone (experimental group). The left side (control group) was grafted with a nano-hydroxyapatite (30%)/corn starch (70%) scaffold. The animals were sacrificed at 4 weeks and 8 weeks. A micro-computerized tomography (${\mu}CT$) of each specimen was taken. Subsequently, the specimens were decalcified and stained with Masson's trichrome for histological and histomorphometric analysis. Results: The average ${\mu}CT$ and histomorphometric measures of bone formation were higher in the control group than in the experimental group at 4 weeks and 8 weeks after surgery though not statistically significant ($P$ >0.05). Conclusion: The rabbit calvarial defect was not successfully repaired by silk fibroin/nano-hydroxyapatite/corn starch composite scaffold and may have been due to an inflammatory reaction caused by silk powder. In the future, the development of composite bone graft material based on various components should be performed with caution.

Three-dimensional structural analysis of the morphological condition of the alveolar bone before and after orthodontic treatment

  • Shimizu, Yasuhiro;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.47 no.6
    • /
    • pp.394-400
    • /
    • 2017
  • Assessing the condition of the alveolar bone before and after orthodontic treatment is important. Recently, cone-beam computed tomography has been widely accepted as a useful tool for orthodontic treatment. Moreover, using a three-dimensional (3D) structural analysis software enables gathering detailed information and quantifying data. The aim of this study was to introduce various quantitative analyses performed before and after orthodontic treatment by using a 3D structural analysis software for evaluating the morphological condition of the alveolar bone of a patient with gingival recession around the canines.

A STUDY ON A CULTURE OF HUMAN ALVEOLAR BONE CELLS (사람 치조골세포의 배양에 관한 연구)

  • Choi, Byung-Ho;Park, Jin-Hyung;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.602-605
    • /
    • 2000
  • Human alveolar bone cells were isolated from alveolar bone fragments obtained from normal individual undergoing third molar extractions. Alveolar bone fragments were cultured as explant. Cells began to migrate in the first $5{\sim}7$ day and were confluent in $5{\sim}7$ week. Matrix mineralization was observed by 4 week. Our studies utilize established protocols for the characterization of these cells as osteoblasts by means of alkaline phosphatase activity determination, identification of osteocalcin antigens, establishing the presence of cells expressing type I collagen and determining the ability of cells to produce calcification. Transmission electron microscopic observations confirmed the presence of a collagen matrix undergoing a mineralization process. This new model, using human alveolar bone cells, may provide a tool to investigate alveolar bone development and physiology and to set up new therapeutic approaches.

  • PDF

The Influencing Factors of the Compliance Level with Therapeutic Regimen after the Bone Mineral Densitometry (골밀도 검사 후 치료지시 이행정도에 영향을 미치는 요인)

  • 유영원;이은남
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • Purpose: This study was to identify the influencing factors of the compliance level to a therapeutic regimen after a bone mineral densitometry test. Method: The sample for the study was 95 people who took the bone mineral densitometry test from March, 2002 to July, 2002. Data was collected by mail using aself reporting questionnaire on the selected variables such as the compliance level, self efficacy, health locus of control, susceptibility, severity, usefulness, barrier, and self esteem. Results: The average compliance level was 63.93. Through multiple regression, three independent variables including chance health locus of control on personality, the result of bone mineral density and self-efficacy were entered in the model as the significant determinants of the compliance level after a bone mineral densitometry test. The coefficients of determination of each variable were 10.9%, 8.3% and 8.1% respectively. Conclusion: The identification of the determinants of the compliance level to the therapeutic regimen after bone mineral densitometry is expected to contribute to the development of an intervention program to improve the compliance level to the therapeutic regimen in osteoporosis patients.

Dairy Dietary Calcium and Osteoporosis - An Overview

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • The osteoporosis is a disease characterized by lower bone mineral content, deterioration of bone tissue and a reduction in the protein and mineral matrix of the bone. The bone becomes more porous leading to increased bone fragility and risk of fracture, particularly of the hip, spine and wrist. Osteoporosis can result in disfigurement, lowered self·esteem, reduction or loss of mobility, and decreased independence. Adequate calcium intake through milk and milk products in childhood and adolescence is a decisive marker for obtaining a maximum bone mass (peak adult bone mass) and f3r the prevention of osteoporosis. Calcium is one of the most critical nutrients associated with the osteoporosis. Dietary calcium is of great significance for healthy skeletal growth and development. The bone mineral content and bone mineral density of young adults is directly related to the calcium intake through milk and dairy products. Milk and milk products are the important sources of calcium as the richness and bioavailability of this nutrient is very high as compared to other food products. If enough calcium is not supplemented through diet, calcium from the bone will be depleted to maintain the blood plasma calcium level. The article focuses on the various issues related to osteoporosis manifestation and the role of dietary calcium especially calcium derived from dairy products.

  • PDF

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.