• Title/Summary/Keyword: Boil-off Rate

Search Result 42, Processing Time 0.028 seconds

Prediction Method of the BOG for the Membrane Type LNGC in Middle East Route (중동항로 취항 멤브레인형 LNGC의 BOG 예측에 관한 연구)

  • 장은규;정연철
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.343-350
    • /
    • 2004
  • LNGC suffers a great heat inflow during navigation and this heat inflow inevitably boils off the LNG. The boiled off gas(BOG) is normally consumed as a fuel for ship's engine. The boiled off LNG means a loss of cargo during transportation from the viewpoint of shipper. Therefore, a contract between shipper and ship operator is made on the limit of boiled off rate(BOR) under 0.15 %/day based on laden voyage. This contract on BOR limit requires that ship's officer has a correct knowledge on BOR for his ship. But, in most cases ship is operated based on only officer's experiences. In this study, author presented a simple model to predict the boiled off gas(BOG) during navigation based on the existing precision heat exchange design technology about the heat distribution on the hull and heat inflow from outside through the hull. The BOG is calculated for ballast and laden voyage based on the actual weather conditions and verified by comparing with the measured BOG for the study ship. The study ship is a membrane type LNGC which is now servicing in Middle east route. Thus, the BOG prediction method which is presented in this study is expected to be used for an useful tool to manage the BOG in now servicing LNGC.

  • PDF

Development of Numerical Analysis Model on Cryogenic Vessel for Safety Pressure Maintenance and Control of Liquid Hydrogen BOG (액체 수소 BOG 안전 압력 유지 및 제어를 위한 극저온 용기의 수치 해석 모델 개발)

  • YOUNG MIN SEO;HYUN WOO NOH;TAE HYUNG KOO;DONG WOO HA;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.280-289
    • /
    • 2024
  • In this study, a cryogenic vessel was constructed to maintain and control the safe pressure of liquid hydrogen boil-off gas (BOG), and the numerical analysis was conducted on the development of computational fluid dynamics model inside the high-pressure vessel. An evaluation system was constructed using cryogenic inner and outer containers, pre-cooler, upper flange, and internal high-pressure container. We attempted to analyze the performance of the safety valve by injecting relatively high temperature hydrogen gas to generate BOG gas and quickly control the pressure of the high-pressure vessel up to 10 bar. As a results, the liquid volume fraction decreased with a rapid evaporation, and the pressure distribution increased monotonically inside a high pressure vessel. Additionally, it was found that the time to reach 10 bar was greatly affected by the filling rate of liquid hydrogen.

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

Optimal Design of Multi-Step Current Leads Using HTS Tapes (고온초전도 테이프를 이용한 다단 전류 도입선의 최적설계)

  • 김민수;나필선;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.84-88
    • /
    • 2001
  • The optimum cross-sectional area Profile of gas-cooled high-temperature superconductor (HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant safety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-step HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-step current leads are discussed.

  • PDF

Economic Optimization Study for a $125,000m^3$ Class LNG Carrier

  • Lee, Kyu-Yeul;Lee, Dong-Kon;Jung, Ho-Hyun;Lee, Chul-Hee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 1984
  • This study is concerned with the economic aspects of $125,000m^3$ class LNG carriers with different propulsion plant such as conventional steam turbine and slow speed diesel engine with reliquefaction plant. The ship's speed and L/B ratio were optimized with criterion of required freight rate(RFR) by using the PROCAL computer program package. In order to investigate the effect of fuel oil price, round trip distance and boil-off rate on the RFR and the optimum speed, sensitivity analysis were also performed.

  • PDF

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Numerical study on the estimation of the temperature profile and thermo-mechanical behaviour in rock around the Taejon LNG Pilot Cavern

  • Lee Dae-Hyuck;Kim Ho-Yeong;Gatelier Nicolas;Amantini Eric
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.233-237
    • /
    • 2003
  • For Taejon LNG Pilot Cavern being constructed to verify the technical aspects for storing LNG in lined rock cavern, various numerical studies were carried out to estimate the temperature profile and to understand thermo-mechanical behaviour in the rock around the cavern. With the help of Claesson's analytical solution and numerical models, the extent of zero degree isotherm and possible boil-off rate of gas to be stored were estimated. Even though the tensile stress by cooling down is very large compared to the tensile strength of the rock, it has been shown that possible rock yielding might bring about the dramatic reduction of the stress.

  • PDF

Analysis of droplet formation under sloshing phenomena in liquid fuel tank (액체 연료 탱크 내 슬로싱 현상에서의 액적 형성 분석)

  • Sungwoo Park;Jinyul Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2023
  • With the global shift from a carbon-based economy to a hydrogen-based economy, understanding the sloshing phenomenon and its impact on boil-off rate (BOR) in liquid hydrogen (LH2) tank trailers is crucial. Here, we analyze the primary breakup process under sloshing phenomena in a liquid fuel tank. We observe the growth of multiple holes on the sheet-like structures and the formation of ligament structures reminiscent of jet atomization. Through the extraction of three-dimensional liquid regions, we analyze the geometrical characteristics of these regions, enabling the classification of sheets, ligaments, and droplets. The present findings could contribute to understanding the breakup mechanism and hold potential for the development of strategies aimed at minimizing BOR.

Process Design and Analysis of BOG Re-liquefaction System with Pre-liquefaction of NGL (NGL 분리식 BOG 재액화 공정 고안 및 해석)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • The boil-off-gases(BOG) in cryogenic LNG storage tanks are generating continuously due to the heat leakage and need to be re-liquefied by the effective way. As the present method to reliquefy BOG is using LNG cold energy to be supplied after low pressure primary pump, the demand of LNG flow rate should be over 10 times of BOG produced rate to reliquefy it. This research invented new effective re-liquefaction system having only 3~4 times of LNG flow rate against unit BOG, that the pre-liquefaction process of NGL and the use of high pressure LNG cold energy after secondary pump. By the analysis, it could be high efficient reliquefying system for all amount of BOG treatment even during the summer time, and improvement of operation safety and efficiency of LNG terminal.