DOI QR코드

DOI QR Code

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships

LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석

  • Lee, Yoon-Ho (Division of Coast Guard, Mokpo National Maritime University)
  • 이윤호 (목포해양대학교 해양경찰학부)
  • Received : 2021.01.27
  • Accepted : 2021.02.25
  • Published : 2021.02.28

Abstract

In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

본 논문에서는 LNG 추진선박에서 발생하는 BOG(boil-off gas)를 이용하여 수소를 생산하고 수소 연료전지 시스템을 보조엔진으로 적용한 개질공정의 특성에 대한 연구를 수행했다. 연구를 위해 BOG 수증기 개질공정을 UniSim R410 프로그램을 이용해 공정설계하고, 개질기의 출구온도와 압력, SCR(steam carbon ratio)에 따른 생성물의 분율과 반응물의 소모량을 산출하였다. 연구 결과 개질온도가 890℃일때 메탄의 반응률이 100 %였으며, 최대 수소 생산량을 보였다. 또한 개질압력이 낮을수록 반응 활성도가 높았다. 하지만 그 이상의 온도가 되면 역반응의 우세로 인해 수소의 생산량은 감소하게 되고, 물과 이산화탄소의 양은 증가했다. 또한 SCR이 증가할수록 수소 생산량도 증가했으나 요구되는 에너지 소비량도 비례하여 증가했다. SCR이 1.8일 때 수소분율이 가장 높았으나 코킹방지를 위해 SCR이 3에서 운전하는 것이 최적 운전범위임을 확인했다. 그리고 개질압력이 낮을수록 발생되는 이산화탄소의 양은 증가했으며, 냉각 및 액화를 위해서는 이산화탄소 발생량을 기준으로 42.5 %의 LNG 냉열이 요구됨을 알 수 있었다.

Keywords

References

  1. Adhikari, S., S. Fernando, S. R. Gwaltney, S. D. F. To, R. M. Bricka, P. H. Steele, and A. Haryanto(2007), A Thermodynamics Analysis of Hydrogen Production by Steam Reforming of Glycerol, Int. J. Hydrogen Energy, Vol. 32, pp. 2875-2880. https://doi.org/10.1016/j.ijhydene.2007.03.023
  2. Cheon, U. R., K. S. Ahn, and H. K. Shin(2018), Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam, Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 1, pp. 19-24. https://doi.org/10.7316/KHNES.2018.29.1.19
  3. Cho, J. H. and Y. W. Kim(2009), Simulation of the Mixed Propane Refrigeration Cycle Using a Commercial Chemical Process Simulator, Journal of Korea Academia-Industrial cooperation Society, Vol. 10, No. 11, pp. 3253-3259. https://doi.org/10.5762/KAIS.2009.10.11.3253
  4. Lee, B. R., H. K. Lim(2016), Comparative studies for the performance of a natural gas steam reforming in a membrane reactor, Journal of the Korean Institute of Gas, Vol. 20, No. 6, pp.95-01. https://doi.org/10.7842/kigas.2016.20.6.95
  5. Lee, T. H., J. H. Choi, T. S. Park, Y. S. Yoo, and S. W. Nam(2009), Design and Self-sustainable Operation of 1 kW SOFC System, Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 5, pp. 384-389.
  6. Lim, T. W., B. L. Kil, J. S. Kim, S. G. Oh, S. K. Park, M. E. Kim, and M. H. Kim(2009), Performance Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and ConstantTemperature in Cathode Inlet), Journal of the Korean Society of Marine Engineering, Vol. 33, No. 8, pp. 1107-1115. https://doi.org/10.5916/jkosme.2009.33.8.1107
  7. Lim, T. W., B. L. Kil, J. S. Kim, S. G. Oh, S. K. Park, M. E. Kim, K. J. Lee, J. S. Oh, and M. H. Kim(2010), Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System, Journal of the Korean Society of Marine Engineering, Vol. 34, No. 8, pp. 1040-1049. https://doi.org/10.5916/jkosme.2010.34.8.1040
  8. Oh, J. S., C. S. Jung, S. K. Park, and M. H. Kim(2016), Availability of SOFC systems equipped with a recycled steam reforming fuel processor, Journal of the Korean Society of Marine Engineering, Vol. 40, No. 7 pp. 569-573. https://doi.org/10.5916/jkosme.2016.40.7.569
  9. Park, J. P., S. H. Cho, S. H. Lee, D. J. Moon, T. O. Kim, and D. I. Shin(2014), Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming, Korean Chem. Eng. Res., Vol. 52, No. 6, pp. 727-735. https://doi.org/10.9713/kcer.2014.52.6.727
  10. Park, Y. C. and K. J. Cho(2005), Status for the Technology of Hydrogen Production form Natural Gas, Korean Chem. Eng. Res., Vol. 43, No. 3, pp. 344-351.
  11. Posada, A. and V. Manousiouthakis(2005), Heat and Power Integration of Methane Reforming based Hydrogen Production, Ind Eng. Chem. Res. Vol. 44, pp. 9113-9119. https://doi.org/10.1021/ie049041k
  12. Roh, H. S., D. J. Seo, Y. T. Seo, W. H. Jung, Y. S. Seo, and W. L. Yoon(2008), Development Trends of Hydrogen Manufacturing Maneuvers, News and Information for Chemical Engineering, Vol. 26, No. 1, pp. 4-11.
  13. Rostrup-nielsen, J. R., J. Seehested, and J. K. Norskov(2002), Hydrogen and Synthesis Gas by Steam and CO2 Reforming, Adv, Actal, Vol. 47, pp. 65-139.
  14. Seo, D. J., K. T. Chue, U. H. Jung, S. H. Park, W. L. Yoon(2009), Study on the development of small-scale hydrogen production unit using steam reforming of natural gas, The Korean Society for New and Renewable Energy, pp. 720-722.
  15. Song, Y. U.(2018), A Study of Cryogenic ORC Application on the LNG Carriers using Cold Heat and Sea Water, The Journal of the Korean Society for Fisheries and Marine Sciences Education, Vol. 30, No. 3, pp. 839-849. https://doi.org/10.13000/JFMSE.2018.06.30.3.839
  16. Xu, J. and G. F. Froment(1989), Methane Steam Reforming, Methnation and water-gas Shift: I. Instrinsic kinetics, AIChE J, Vol. 35, pp. 88-96. https://doi.org/10.1002/aic.690350109
  17. Yi, Y., S. J. Park, M. S. Kim, J. S. Shin, and S. J. Shin(2018), A Study on Optimization of Reformer for kW Class SOFC System, Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 4, pp. 317-323. https://doi.org/10.7316/KHNES.2018.29.4.317
  18. Yoon, S. K.(2016), Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships, Journal of the Korean Society of Marine Engineering, Vol. 40, No. 3 pp. 174-179. https://doi.org/10.5916/jkosme.2016.40.3.174

Cited by

  1. A Study on the Weldment Hardening Discrimination Procedure and Improvement of Flux Cored Arc Welding Process of ASTM A553-1 (9% Nickel Steel) Material Using Bead Geometry Distribution vol.11, pp.8, 2021, https://doi.org/10.3390/met11081282
  2. A Study on Determining Weld Joint Hardening and a Quality Evaluation Algorithm for 9% Nickel Weld Joints Using the Dilution Ratio of the Base Material in Fiber Laser Welding vol.11, pp.8, 2021, https://doi.org/10.3390/met11081308