DOI QR코드

DOI QR Code

Analysis of droplet formation under sloshing phenomena in liquid fuel tank

액체 연료 탱크 내 슬로싱 현상에서의 액적 형성 분석

  • Sungwoo Park (School of Mechanical Engineering, Pusan National University) ;
  • Jinyul Hwang (School of Mechanical Engineering, Pusan National University)
  • Received : 2023.06.30
  • Accepted : 2023.07.28
  • Published : 2023.07.31

Abstract

With the global shift from a carbon-based economy to a hydrogen-based economy, understanding the sloshing phenomenon and its impact on boil-off rate (BOR) in liquid hydrogen (LH2) tank trailers is crucial. Here, we analyze the primary breakup process under sloshing phenomena in a liquid fuel tank. We observe the growth of multiple holes on the sheet-like structures and the formation of ligament structures reminiscent of jet atomization. Through the extraction of three-dimensional liquid regions, we analyze the geometrical characteristics of these regions, enabling the classification of sheets, ligaments, and droplets. The present findings could contribute to understanding the breakup mechanism and hold potential for the development of strategies aimed at minimizing BOR.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (no. 20223030040120 and no. 20214000000140).

References

  1. 산업통상자원부. 2018, "수소경제 활성화 로드맵," 정책동향보고서, Vol., pp.1-68. 
  2. 김재경, 오은주, 정진영, 박진남, 김윤성; 임현지. 2019, "친환경 CO2-free 수소생산 활성화를 위한 정책연구," 에너지경제연구원 수시연구보고서, Vol., pp.1-97. 
  3. 이원석, 김영민, 신영재, 왕지훈, 문상호, 박희준, 장성진; 권오광. 2021, "국가 수소공급 인프라 구축을 위한 블루수소의 역할," Vol.
  4. 이동주. 2022, "수소사회로 가는 길목, 액화수소 저장과 운송을 위한 진공기술," 진공이야기, Vol. 9(2), pp.19-27. 
  5. Lee, S.J., Kim, M., Lee, D., Kim, J.; Kim, Y., 2007, "The effects of LNG-tank sloshing on the global motions of LNG carriers," Ocean Engineering, Vol. 34(1), pp.10-20.  https://doi.org/10.1016/j.oceaneng.2006.02.007
  6. Ibrahim, R.A., 2020, "Assessment of breaking waves and liquid sloshing impact," Nonlinear Dynamics, Vol. 100, pp.1837-1925.  https://doi.org/10.1007/s11071-020-05605-7
  7. 박준상. 2020, "사각용기의 강한 비선형 슬로싱 문제에서 발생하는 페러데이파와 슬로싱파의 상호작용," 한국가시화정보학회지, Vol. 18(3), pp.14-22.  https://doi.org/10.5407/JKSV.2020.18.3.014
  8. 박준상. 2019, "사각용기에서 발생하는 고점성 유체의 슬로싱 유동," 한국가시화정보학회지, Vol. 17(3), pp.39-45.  https://doi.org/10.5407/JKSV.2019.17.3.039
  9. Shao, C., Luo, K., Chai, M.; Fan, J., 2018, "Sheet, ligament and droplet formation in swirling primary atomization," AIP Advances, Vol. 8(4), p.045211. 
  10. Shinjo, J.; Umemura, A., 2010, "Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation," International Journal of Multiphase Flow, Vol. 36(7), pp.513-532.  https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
  11. Wu, S.; Ju, Y., 2021, "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Vol. 223, p.120001. 
  12. Grotle, E.L.; Æsoy, V. Experimental and numerical investigation of sloshing in marine LNG fuel tanks. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 2017; p. V001T001A046. 
  13. Liu, Z., Feng, Y., Lei, G.; Li, Y., 2019, "Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels," Aerospace Science and Technology, Vol. 85, pp.544-555.  https://doi.org/10.1016/j.ast.2019.01.005
  14. Brackbill, J.U., Kothe, D.B.; Zemach, C., 1992, "A continuum method for modeling surface tension," Journal of computational physics, Vol. 100(2), pp.335-354.  https://doi.org/10.1016/0021-9991(92)90240-Y
  15. Negeed, E.-S.R., Hidaka, S., Kohno, M.; Takata, Y., 2011, "Experimental and analytical investigation of liquid sheet breakup characteristics," International Journal of Heat and Fluid Flow, Vol. 32(1), pp.95-106.  https://doi.org/10.1016/j.ijheatfluidflow.2010.08.005
  16. Daskiran, C., Xue, X., Cui, F., Katz, J.; Boufadel, M.C., 2021, "Large eddy simulation and experiment of shear breakup in liquid-liquid jet: formation of ligaments and droplets," International Journal of Heat and Fluid Flow, Vol. 89, p.108810. 
  17. Hwang, J.; Sung, H.J., 2018, "Wall-attached structures of velocity fluctuations in a turbulent boundary layer," Journal of Fluid Mechanics, Vol. 856, pp.958-983.  https://doi.org/10.1017/jfm.2018.727
  18. Gorokhovski, M.; Herrmann, M., 2008, "Modeling primary atomization," Annu. Rev. Fluid Mech., Vol. 40, pp.343-366.  https://doi.org/10.1146/annurev.fluid.40.111406.102200