• Title/Summary/Keyword: Blood Vessel

Search Result 776, Processing Time 0.036 seconds

Detection of Vessel Contours in Coronary Arteriograms (관상동맥 영상에서의 혈관 경계 검출)

  • 엄경식;정재호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.439-446
    • /
    • 1995
  • In this paper, we present an algorithm for the detection of blood vessel contours in coronary aiteriograms. The proposed algorithm is based on both matched filtering and adaptive tracking. The proposed algorithm has merits in that it overcomes the bifurcation section problem as well as narrow vessel problem. Moreover, the algorithm has fast performance as well as insensitivity to noise.

  • PDF

A Comparative Study of the Hemodynamic Hypotheses for the Generation of Atherosclerosis (동맥경화증의 발생에 관한 혈류역학적 가설들에 대한 비교연구)

  • Suh, Sang-Ho;Cho, Min-Tae;Roh, Hyung-Woon;Kwon, Hyuck-Moon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1915-1918
    • /
    • 2003
  • Atherosclerosis, which is a degenerate disease, is believed to occur in the vascular system due to deposition of cholesterol and low density lipoprotein(LDL) or thrombosis on the blood vessel. Atherosclerosis narrows arterial lumen, which is known as stenosis phenomenon of blood vessel. Pathogenesis of atherosclerosis is thought to occur mainly by aging. Restenosis phenomenon is observed in the same site of insertion of a stent and balloon angioplasty after treatment of interventional theraphy. Several hypothetical theories related to the generation of atherosclerosis have been reported: high shear stress theory, low shear stress theory, high shear stress gradient theory, flow separation and turbulence theory and high pressure theory. However, no one theory clearly explains the causes of atherosclerosis. In the present study the generation of atherosclerosis in the left coronary artery is investigated. The hypotheses are verified by using the computer simulation.

  • PDF

Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel (맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Cho, Min-Tae;Park, Chan-Young;Chang, Jun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

The Numerical study for flow characteristics of bifurcation in blood vessel (혈관 분지부의 유동 특성에 대한 수치해석 연구)

  • Lee, In-Sub;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.741-746
    • /
    • 2003
  • The main objective of present study is to obtain information for flow characteristics, such as velocity and wall shear stress, of bifurcation in blood vessel. Branch flows for Newtonian fluids are simulated by using Fluent V.6.0. The numerical simulations are carried out for five cases divided by different values of bifurcation angle and area ratio. As a result of simulation, high wall shear stress is appeared at the bifurcated region. As increasing bifurcation angle, pressure drop is increasing. In addition, as the area is decreasing, pressure drop and wall shear stress is increasing.

  • PDF

Interaction between a Blood Vessel- Inducing Protein Angiogenin and Its Binding Protein Actin

  • So, Seung-Ho;Ahn, Byung-Cheol;Paik, Seung-Bum;Chang, Soo-Ik
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.43-43
    • /
    • 1996
  • Bovine angiogenin (bAng) is a potent blood vessel inducing protein purified from cow milk. Fluorescence spectroscopy has been used to study the interaction of bAng with actin in 50 mM Tris-HCl, pH 7.5, and 1 mM CaCl$_2$ at 25$^{\circ}C$. Actin contains four tryptophans but bAng contains no tryptophans. A 50% decrease in intrinsic fluorescence accompanied formation of the bAng/actin complex. (omitted)

  • PDF

Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation

  • Yu Jung Shin;Jung Hyun Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • The development and differentiation of endothelial cells (ECs) are fundamental processes with significant implications for both health and disease. ECs, which are found in all organs and blood vessels, play a crucial role in facilitating nutrient and waste exchange and maintaining proper vessel function. Understanding the intricate signaling pathways involved in EC development holds great promise for enhancing vascularization, tissue engineering, and vascular regeneration. Hematopoietic stem cells originating from hemogenic ECs, give rise to diverse immune cell populations, and the interaction between ECs and immune cells is vital for maintaining vascular integrity and regulating immune responses. Dysregulation of vascular development pathways can lead to various diseases, including cancer, where tumor-specific ECs promote tumor growth through angiogenesis. Recent advancements in single-cell genomics and in vivo genetic labeling have shed light on EC development, plasticity, and heterogeneity, uncovering tissue-specific gene expression and crucial signaling pathways. This review explores the potential of ECs in various applications, presenting novel opportunities for advancing vascular medicine and treatment strategies.

Study on Improvement of Blood Stagnation by Pulsed Magnetic Field

  • Son, Hee Jung;Yoo, Jun Sang;Lee, Myeung Hee;Hwang, Do Gwen;Lee, Hyun Sook
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • This study explored the effect of pulsed magnetic field (PMF) stimulus on the improvement of blood stagnation by means of photoplethysmography (PPG). Our stimulus system was designed to generate PMF with a maximum intensity variation of 0.20 T at a transition time of $160{\mu}s$, with pulse intervals of 1 Hz. In order to quantitatively estimate vascular condition, indices such as blood vessel tension (BVT), stress power (SP), differential pulse wave index (DPI) and remained blood volume (RBV) were calculated from the second derivative of the PPG signal and power density spectrum (PDS). Our results showed that non-invasive PMF stimulus was effective in improving blood stagnation. Therefore, it may be concluded that appropriate PMF stimulus affects the blood circulatory system.