• Title/Summary/Keyword: Block diagram

Search Result 207, Processing Time 0.025 seconds

Modeling and analysis of radiation effects for 1-D RLH-TL (1차원 RLH-TL 방사효과 모델링 및 해석)

  • Moon, Hyo-Sang;Lee, Bom-Son
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.8-15
    • /
    • 2007
  • This paper presents the radiation rate formula due of a inclusion of a series capacitor and shunt inductor in a unit cell for the right/left-handed transmission line (RLH-TL). The equivalent circuit for a RLH unit cell considering radiation effects is presented and analyzed in terms of the Bloch impedance and dispersion diagram. It has been found that when two radiation rates are identical, the Blockimpedance reduces to the characteristic impedance of the host conventional RH-TL. Besides, design equations for a unit cell for a specific phase shift at a given frequency are provided. The method of realizing uniform excitation along the RLH-TL is also proposed for antenna applications.

Design Procedure for System in Package (SIP) Business

  • Kwon, Heung-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.109-119
    • /
    • 2003
  • o In order to start SIP Project .Marketing (& ASIC team) should present biz planning, schedule, device/SIP specs., in SIP TFT prior to request SIP development for package development project. .In order to prevent (PCB) revision, test, burn-in, & quality strategy should be fixed by SIP TFT (PE/Test, QA) prior to request for PKG development. .Target product price/cost, package/ test cost should be delivered and reviewed. o Minimum Information for PCB Design, Package Size, and Cost .(Required) package form factor: size, height, type (BGA, QFP), Pin count/pitch .(Estimated) each die size including scribe lane .(Estimated) pad inform. : count, pitch, configuration(in-line/staggered), (open) size .(Estimated) each device (I/O & Core) power (especially for DRAM embedded SIP) .SIP Block diagram, and net-list using excel sheet format o Why is the initial evaluation important\ulcorner .The higher logic power resulted in spec. over of DRAM Tjmax. This caused business drop longrightarrow Thermal simulation of some SIP product is essential in the beginning stage of SIP business planning (or design) stage. (i.e., DRAM embedded SIP) .When SIP is developed using discrete packages, the I/O driver Capa. of each device may be so high for SIP. Since I/O driver capa. was optimized to discrete package and set board environment, this resulted in severe noise problem in SIP. longrightarrow In this case, the electrical performance of product (including PKG) should have been considered (simulated) in the beginning stage of business planning (or design).

  • PDF

Development of Control System Design Program Based on IEC1131-3 (IEC1131-3에 입각한 제어 시스템 설계 프로그램 개발)

  • Huh, Woo-Jung;Shin, Kyeong-Bong;Kim, Eung-Seok;Kim, Moon-Cheol;Park, Jung-Min;Kim, Sung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1263-1265
    • /
    • 1996
  • IEC1131-3 Specification of Programming Controller is established in 1994 and consists of 3 graphical languages and 2 textual languages. It is used in PLC and small scale controller because of its uniformity and extensibility. This paper describes Soft Logic Designer which is a graphical and textual programming editor for IEC1131-3 programming languages. Soft Logic Designer is developed with Object Orient Language, C++ under Microsoft Windows 95. It has two graphic editors for Sequential Function Chart and Function Block Diagram and one textual editor for Structured Text. Users can efficiently write high-level programs with mouse and menu buttons.

  • PDF

IR Image Processing IP Design, Implementation and Verification For SoC Design

  • Yoon, Hee-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, We studied the possibility of SoC(System On Chip) design using infrared image processing IP(Intellectual Property). And, we studied NUC(Non Uniformity Correction), BPR(Bad Pixel Recovery), and CEM(Contrast Enhancement) processing, the infrared image processing algorithm implemented by IP. We showed the logic and timing diagram implemented through the hardware block designed based on each algorithm. Each algorithm was coded as RTL(Register Transfer Level) using Verilog HDL(Hardware Description Language), ALTERA QUARTUS synthesis, and programed in FPGA(Field Programmable Gated Array). In addition, we have verified that the image data is processed at each algorithm without any problems by integrating the infrared image processing algorithm. Particularly, using the directly manufactured electronic board, Processor, SRAM, and FLASH are interconnected and tested and the verification result is presented so that the SoC type can be realized later. The infrared image processing IP proposed and verified in this study is expected to be of high value in the future SoC semiconductor fabrication. In addition, we have laid the basis for future application in the camera SoC industry.

Battery Monitoring System for High Capacity Uninterruptible Power Supply (대용량 무정전 전원장치를 위한 배터리 모니터링 시스템)

  • Lee, Hyung-Kyu;Kim, Gi-Taek
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.580-585
    • /
    • 2019
  • Batteries are being used in ESS, electric vehicles and uninterruptible power backup systems. Lead-acid batteries are the most used batteries for high capacity power back up equipment due to their high reliability and low price advantages. It is very important to estimate the chargeable capacity(SoH), and many algorithms were proposed to estimate the internal resistance of the battery. In this paper, the Battery Monitoring System(BMS) for high capacity uninterruptible power supply for IDC is proposed. A simple algorithm for estimating internal resistance was proposed. An computational block diagram of the proposed signal processing algorithm and BMS system configuration of CPU and analog circuit were shown. The proposed method was proved useful by presenting data examples of application to actual IDC sites.

Implementation of LTE-A PDSCH Decoder using TMS320C6670 (TMS320C6670 기반 LTE-A PDSCH 디코더 구현)

  • Lee, Gwangmin;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.79-85
    • /
    • 2018
  • This paper presents an implementation method of Long Term Evolution-Advanced (LTE-A) Physical Downlink Shared Channel (PDSCH) decoder using a general-purpose multicore Digital Signal Processor (DSP), TMS320C6670. Although the DSP provides some useful coprocessors such as turbo decoder, fast Fourier transformer, Viterbi Coprocessor, Bit Rate Coprocessor etc., it is specific to the base station platform implementation not the mobile terminal platform implementation. This paper shows an implementation method of the LTE-A PDSCH decoder using programmable DSP cores as well as the coprocessors of Fast Fourier Transformer and turbo decoder. First, it uses the coprocessor supported by the TMS320C6670, which can be used for PDSCH implementation. Second, we propose a core programming method using DSP optimization method for block diagram of PDSCH that can not use coprocessor. Through the implementation, we have verified a real-time decoding feasibility for the LTE-A downlink physical channel using test vectors which have been generated from LTE-A Reference Measurement Channel (RMC) Waveform R.6.

A Systematic Engineering Approach to Design the Controller of the Advanced Power Reactor 1400 Feedwater Control System using a Genetic Algorithm

  • Tran, Thanh Cong;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.58-66
    • /
    • 2018
  • This paper represents a systematic approach aimed at improving the performance of the proportional integral (PI) controller for the Advanced Power Reactor (APR) 1400 Feedwater Control System (FWCS). When the performance of the PI controller offers superior control and enhanced robustness, the steam generator (SG) level is properly controlled. This leads to the safe operation and increased the availability of the nuclear power plant. In this paper, a systems engineering approach is used in order to design a novel PI controller for the FWCS. In the reverse engineering stage, the existing FWCS configuration, especially the characteristics of the feedwater controller as well as the feedwater flow path to each SG from the FWCS, were reviewed and analysed. The overall block diagram of the FWCS and the SG was also developed in the reverse engineering process. In the re-engineering stage, the actual design of the feedwater PI controller was carried out using a genetic algorithm (GA). Lastly, in the validation and verification phase, the existing PI controller and the PI controller designed using GA method were simulated in Simulink/Matlab. From the simulation results, the GA-PI controller was found to exhibit greater stability than the current controller of the FWCS.

Simulation of Dynamic Characteristics of a Trigenerative Climate Control System Based On Peltier Thermoelectric Modules

  • Vasilyev, G.S.;Kuzichkin, O.R.;Surzhik, D.I.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.252-257
    • /
    • 2021
  • The application of the principle of trigeneration allows to simultaneously provide electricity to power electronic devices, as well as heat and cold to create the necessary microclimate of the premises and increase efficiency compared to separate cooling and heating systems. The use of Peltier thermoelectric modules (TEM) as part of trigenerative systems allows for smooth and precise control of the temperature regime, high manufacturability and reliability due to the absence of moving parts, resistance to shock and vibration, and small weight and size parameters of the system. One of the promising areas of improvement of trigenerative systems is their modeling and optimization based on the automatic control theory. A block diagram and functional model of an energy-saving trigenerative climate control system based on Peltier modules are developed, and the transfer functions of an open and closed system are obtained. The simulation of the transient characteristics of the system with varying parameters of the components is performed. The directions for improving the quality of transients in the climate control system are determined, as well as the prospects of the proposed methodology for modeling and analyzing control systems operating in substantially nonlinear modes.

Rapid construction delivery of COVID-19 special hospital: Case study on Wuhan Huoshenshan hospital

  • Wang, Chen;Yu, Liangcheng;Kassem, Mukhtar A.;Li, Heng;Wang, Ziming
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.345-369
    • /
    • 2022
  • Infectious disease emergency hospitals are usually temporarily built during the pneumonia epidemic with higher requirements regarding diagnosis and treatment efficiency, hygiene and safety, and infection control.This study aims to identify how the Building Information Modeling (BIM) + Industrialized Building System (IBS) approach could rapidly deliver an infectious disease hospital and develop site epidemic spreading algorithms. Coronavirus-19 pneumonia construction site spreading algorithm model mind map and block diagram of the construction site epidemic spreading algorithm model were developed. BIM+IBS approach could maximize the repetition of reinforced components and reduce the number of particular components. Huoshenshan Hospital adopted IBS and BIM in the construction, which reduced the workload of on-site operations and avoided later rectification. BIM+IBS integrated information on building materials, building planning, building participants, and construction machinery, and realized construction visualization control and parametric design. The delivery of Huoshenshan Hospital was during the most critical period of the Coronavirus-19 pneumonia epidemic. The development of a construction site epidemic spreading algorithm provided theoretical and numerical support for prevention. The agent-based analysis on hospital evacuation observed "arched" congestion formed at the evacuation exit, indicating behavioral blindness caused by fear in emergencies.

90/150 RCA Corresponding to Maximum Weight Polynomial with degree 2n (2n 차 최대무게 다항식에 대응하는 90/150 RCA)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.819-826
    • /
    • 2018
  • The generalized Hamming weight is one of the important parameters of the linear code. It determines the performance of the code when the linear codes are applied to a cryptographic system. In addition, when the block code is decoded by soft decision using the lattice diagram, it becomes a measure for evaluating the state complexity required for the implementation. In particular, a bit-parallel multiplier on finite fields based on trinomials have been studied. Cellular automata(CA) has superior randomness over LFSR due to its ability to update its state simultaneously by local interaction. In this paper, we deal with the efficient synthesis of the pseudo random number generator, which is one of the important factors in the design of effective cryptosystem. We analyze the property of the characteristic polynomial of the simple 90/150 transition rule block, and propose a synthesis algorithm of the reversible 90/150 CA corresponding to the trinomials $x^2^n+x^{2^n-1}+1$($n{\geq}2$) and the 90/150 reversible CA(RCA) corresponding to the maximum weight polynomial with $2^n$ degree by using this rule block.