• Title/Summary/Keyword: Blind channel estimation

Search Result 63, Processing Time 0.018 seconds

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

A Trellis-based Technique for Blind Channel Estimation and Equalization

  • Cao, Lei;Chen, Chang-Wen;Orlik, Philip;Zhang, Jinyun;Gu, Daqing
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 2004
  • In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.

Blind Channel Estimation based on Hadamard Matrix Interstream Transmission for Multi-Cell MIMO Networks (다중 셀 MIMO 네트워크를 위한 Hadamard 행렬 Interstream 전송 기반 Blind 채널 추정)

  • Yang, Jae-Seung;Hanif, Mohammad Abu;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • In this paper, we introduce a Hadamard matrix interstream transmission based blind channel estimation for multi-cells multiple-input and multiple-output (MIMO) networks. The proposed scheme is based on a network with mobile stations (MS) which are deployed with multi cells. We assume that the MS have the signals from both cells. The signal from near cell are considered as desired signal and the signals from the other cells are interference signal. Since the channel is blind, so that we transmit Hadamard matrix pattern pilot stream to estimate the channel; that gives easier and fast channel estimation for large scale MIMO channel. The computation of Hadamard based system takes only complex additions, and thus the complexity of which is much lower than the scheme with Fourier transform since complex multiplications are not needed. The numerical analysis will give perfection of proposed channel estimation.

Joint Blind Data/Channel Estimation Based on Linear Prediction

  • Ahn, Kyung-Seung;Byun, Eul-Chool;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.869-872
    • /
    • 2001
  • Blind identification and equalization of communication channel is important because it does not need training sequence, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel estimator and equalizer length mismatch as well as for its simple adaptive algorithms. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training sequences for data estimation and desired signal for channel estimation.

  • PDF

Improved Blind Multipath Estimation for Long Code DS-CDMA

  • Yu Qian;Bi Guoan;Zhang Gaonan
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.278-283
    • /
    • 2005
  • This paper proposes a blind channel estimation scheme for long code direct sequence code division multiple access (DS­CDMA) systems with multipath fading channels. This scheme combines the advantages of Toeplitz displacement and correlation matching methods to achieve improved performance. The basic idea is to remove the effects of noise and interferences with Toeplitz displacement operation and then estimate the multi path channel parameters with the correlation matching method. Simulation results are presented to show that the proposed scheme provides better MSE performance and robustness against the near-far problem.

Simple Blind Channel Estimation Scheme for Downlink MC-CDMA Systems (하향링크 MC-CMDMA 시스템을 위한 간단한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.480-487
    • /
    • 2012
  • In multicarrier code-division multiple access (MC-CDMA) systems, conventional blind channel estimation schemes require the inverse matrix calculation or eigenvalue decomposition of the received signal covariance matrix. Therefore, computational complexity of the conventional schemes is too high and they cannot be employed in downlink systems. In this paper, we propose a simple blind channel estimation scheme with very low computational complexity. Simulation results show that the proposed scheme has better channel estimation and bit error rate (BER) performance than the conventional schemes.

Blind downlink channel estimation for TDD-based multiuser massive MIMO in the presence of nonlinear HPA

  • Pasangi, Parisa;Atashbar, Mahmoud;Feghhi, Mahmood Mohassel
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.426-436
    • /
    • 2019
  • In time division duplex (TDD)-based multiuser massive multiple input multiple output (MIMO) systems, the uplink channel is estimated and the results are used in downlink for signal detection. Owing to noisy uplink channel estimation, the downlink channel should also be estimated for accurate signal detection. Therefore, recently, a blind method was developed, which assumes the use of a linear high-power amplifier (HPA) in the base station (BS). In this study, we extend this method to a scenario with a nonlinear HPA in the BS, where the Bussgang decomposition is used for HPA modeling. In the proposed method, the average power of the received signal for each user is a function of channel gain, large-scale fading, and nonlinear distortion variance. Therefore, the channel gain is estimated, which is required for signal detection. The performance of the proposed method is analyzed theoretically. The simulation results show superior performance of the proposed method compared to that of the other methods in the literature.

Complexity Reduced Blind Subspace Channel Estimation for DS/CDMA DMB Downlink (DS/CDMA DMB 하향 링크에서 복잡도가 감소된 블라인드 부분 공간 채널 추정)

  • Yang Wan-Chul;Lee Byung-Seub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.863-871
    • /
    • 2004
  • In this paper, we propose a subspace channel estimation technique for DS/CDMA DMB down link system, which can obtain reduction in numerical complexity by using of matched filtering outputs. The complexity reduction is considerable when the channel length is small and the system is moderately loaded. Previously proposed subspace-based blind channel estimation algorithm suffer from high numerical complexity for systems with large spreading gains. Although the proposed algerian suffers a slight performance loss, it becomes negligible for large observation length. Performance is evaluated through simulations and the derivation of the analytical MSE.

Blind Adaptive Channel Estimation using Multichannel Linear Prediction (다채널 선형예측을 이용한 블라인드 적응 채널 추정)

  • 조주필;안경승;황지원
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.114-120
    • /
    • 2003
  • Blind channel estimation of communication channels is a problem of important current theoretical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. This paper proposes the blind adaptive channel estimation using multichannel linear prediction method. Computer simulations are presented to compare the proposed algorithm with the existing ones.

  • PDF

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.