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Improved Blind Multipath Estimation for Long Code
- DS-CDMA |

Qian Yu, Guoan Bi, and Gaonan Zhang

Abstract: This paper proposes a blind channel estimation scheme
for long code direct sequence code division multiple access (DS-
CDMA) systems with multipath fading channels. This scheme
combines the advantages of Toeplitz displacement and correlation
matching methods to achieve improved performance. The basic
idea is to remove the effects of noise and interferences with Toeplitz
displacement operation and then estimate the multipath channel
parameters with the correlation matching method. Simulation re-
sults are presented to show that the proposed scheme provides bet-
ter MSE performance and robustness against the near-far problem.

Index Terms: Blind channel estimation, correlation matching, long
code, Toeplitz displacement.

I. INTRODUCTION

Direct sequence code division multiple access (DS-CDMA)
technique is of increasing importance due to its many desirable
properties. The use of long spreading codes will be a main
option for the third generation DS-CDMA based wireless net-
works [1]. Long codes guarantee that all users achieve about the
same performance on average, but with a period much longer
than that of a data symbol. Because long sequences destroy the
bit-interval cyclo-stationarity properties of the signals [2], most
estimation algorithms based on short codes cannot be directly
applied to long code systems. A few algorithms were reported
for long-code CDMA systems [3]-[8]. Based on subspace al-
gorithm in [3], both blind and pilot-assisted channel estimation
procedures were presented for synchronous CDMA systems.
Blind channel estimation procedures based on array observa-
tions were reported in [4]. The least-square criterion algorithms
were proposed in [5] for systems with frequency-selective fad-
ing channels. The correlation-matching technique was used to
blindly estimate multipath parameters in [6]. The channel ac-
quisition problem in the scenario of single-rate reverse link was
considered in [7]. A Toeplitz displacement method based on
subspace algorithm was developed for multipath channel esti-
mation in [§].

In this paper, a new blind channel estimation method is devel-
oped by combining the advantages from both Toeplitz displace-
ment and correlation matching methods. The conventional cor-
relation matching estimation method was developed in [6] to ex-
plore the output covariance matrix to match the approximations
based on the received data. Compared to the subspace-based ap-
proach, the correlation matching estimation offers a better per-
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formance for loaded systems with only some mild assumptions.
The basic idea of the proposed method is to remove the effects
of the channel noise and other user’s interferences by apply-
ing the Toeplitz displacement operation before the estimation
of multipath channel is performed with the correlation matching
method. Simulation results are presented to compare the per-
formances of the proposed and other reported methods based on
correlation matching and the subspace Toeplitz estimation. The
comparison shows that the proposed method offers better MSE
performance and near-far resistance.

II. SIGNAL MODEL

Consider a coherent synchronized DS-CDMA system over a
multipath channel with K active users. To apply the Toeplitz
displacement method, we refer to the signal model described
in [8]. The baseband representation of the received signal after
coherent reception is given by

[ K
a(t) = Y > At —nT - m)be(n) +w(t) (1)
n=—o0 k=1

where w(t) is the additive and circularly symmetric Gaussian
noise process with variance a?u and Ay and by, are, respectively,
the amplitude of the signal and the transmitted bit for user k.
The amplitude of each user’s signal is modeled as a fixed, but
unknown quantity. For randomized long code DS-CDMA, the
spreading waveform ¢} (t) in (1) denotes the effective spread-
ing waveform for user k. The effective spreading waveform is
constructed by the convolution of the original spreading wave-
form with the channel response, that is é7(t) = cp(t) * hi(t),
where hy(t) is the channel impulse response for user k and the
spreading waveform is formed by

N

R(t) =D gt —IT.) @)
=1

where %(¢) is the shape of the chip with a duration T,. In
our case, the rectangular pulse is assumed for simplicity. The
spreading waveform ¢} (1) for user k changes from symbol to
symbol and takes values of (+1/v/N) with equal probability,
where N is the spreading gain or the number of chips per sym-
bol, i.e., the symbol duration " = NT,. The delay 7 in (1)
for user k is assumed to be the integral multiples of a chip dura-
tion. The fractional parts of the delays are incorporated into the
effective channel impulse response hy(t).

It is assumed that signals and the noise are mutually inde-
pendent, the channel length for each user is the same as M
(M < N) chips, and the multipath delay spread is less than
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a symbol interval. It is also assumed that the fading coefficients
remain constant over the entire data collection block. The tech-
niques to be explored in this paper require the knowledge of the
desired user’s channel length. The received signal is sampled at
the chip rate and chip-matched by a filtering process. An ob-
servation vector x(n) is formed by concatenating aN + M — 1
samples, where a represents the number of symbols contained in
the observation vector, which will be explained further shortly.
The filtered and sampled complex channel impulse response is
denoted by hy, = [h4(0), -, hi(M — 1)]T.

Consider the expression of the observation vector for a syn-
chronized system (7 =0,V k). An observation vector is
formed to contain ¢ symbols and M — 1 bits which belong to
a fraction of a symbol. The existence of the fractional part of
the symbol is due to the effects of intersymbol interference. The
observation vector of aN + M — 1 samples at the chip rate is
given by

K
x(n) = Z ArCr(n)Hgbg(n) + w(n) 3)
k=1

where x(n) = [z(n),---,z(n +aN + M — 2)]T and w(n) =
[w(n), -, wn + aN + M — 2)]7 are vectors of the received
samples and noise samples of size (aN + M — 1) x 1, and
b(n) = [b(|n/N| —1),---,b([n/N| +a)|T isa(a+2) x1
vector of data bits. The operator |-| returns the largest integer
smaller than its argument. The channel matrix Hy, for user &k
is given by Hy, = I, ;2 ® hy, and Cg(n) is the spreading code
matrix for user k with dimension (aN + M — 1) x (a + 2)M.

To derive the spreading code matrix, an (N + M — 1) x M
matrix C(ex(n), M) is defined as [8]

ck(n) 0 0 i
ck(n+1) ck(n) :

: 0
cr(n+M —1) e (n)
ce(n+ N — 1) cx(n+ N — M)

0 ck(in+ N —1) :

L 0 0 ck(n +:N - 1) ]

If Cy pr(n) is defined to be the first N rows of C(cx(n), M)

and Ci,M(n) to be the last M — 1 rows of C(cg(n), M), the
spreading code matrix for user k, C(n) is given by

Ci m®Cp 0+ N) 0
C @+ N) Cp o (0 12N)

2 pr+al) € gy (ot (a+ M)

where (Nj,lc, m(n) is composed of the first M — 1 rows of
Cllc,M (n).

We use M matched filters per received symbol to fully exploit
the properties of the received signals. Without loss of generality,

279

user 1 is assumed to be the desired user. The aM X 1 observa-
tion vector y(n) is given by

y(n) = Si(n)x(n) ' ‘ @
[
= Si(n) <Z Aka(n)Hkbk(n)> +S1(n)w(n)
k=1
where the matched filtering matrix S; (n) is given by
_CiM(n + N)
C; y(n+N) - 0
ST (n)= S . ®
‘ 0 ‘ Ci,M(n +aN)

C%)M(n + a:N)

The matrices $7 (1) and C; (n) are related by

C?)M(n) 0
Ci(n) = 0 sT(n) 0
0 . Cim(n+(@a+1)N)

That is, C(n) is formed by augmenting ST (n) by 2M appro-
priate columns.

III. CHANNEL ESTIMATION

In this section, a method of correlation-matching channel esti-
mation is developed to achieve improvements on estimation per-
formance and robustness to the variations of the system environ-
ments. The conventional correlation-matching channel estima-
tion is proposed in [6]. Compared with the subspace-based ap-
proaches, this method requires only mild identifiability assump-
tions and offers better performance for loaded systems. The ba-
sic idea is to match the output covariance matrix (parameterized
by the unknown channel vectors) with the instantaneous approx-
imations based on the received data. This method is briefly de-
scribed as follows.

Let us consider the aM x 1 matched filter output vector y(n)
given in (4). The covariance matrix of this observation vector is
obtained as

Ry (n) =E[y(n)y” (n)]
=081 (n)Ca(n) By HY' €7 (n)S ()
+R(n) + Ry(n) (6)
where 02 = A2E[b2(n)] and Ry, (n) = 0281(n)ST (n) is noise

autocorrelation matrix. The contribution of other users’ interfer-
ences is

K
R;(n) =Y _ 0781 (n)Cr(n)HHY C (n)ST (n). (7)
k=2

Let ﬁy (n) denote some estimator of R, (n), and

E(n) = Ry(n) — Ry (n) ®



280 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

be the estimation error rhatrix. The cost function is defined as

1 e 1 &
J = E;J(HFE;IIE(N)II% )

where N is the number of transmitted symbols. By minimiz-
ing this cost function, all channel parameters can be obtained.
These are the general framework of the correlation-matching
technique.

Now, improvement is to be made on the conventional
correlation-matching channel estimation. Before operating the
autocorrelation of the observation vector, the Toeplitz displace-
ment is applied to remove the effects of the channel noise and
other users’ interferences from the observation vector. Let us
define

N
I 1 -
SC, = A E S1(n)Ci(n) (10)
S n=1
and
I R
SCe = 3, L SimCk(m) k=20, K. (D

It is noted that the asymptotic approximation below follows
from key assumptions made about the randomized spreading
codes. That is, the components of the code sequence are inde-
pendently and identically distributed, and are stationary at the
chip rate. Therefore we have S;(n)Ci(n) = SC; + A(n),
and, S1(n)Cg(n). = SCi + Bi(n),k = 2,-.. K, where
A(n) and Bg(n) are, respectively, time varying perturbation
matrices, SC; = limy, .00 SC; = [0 Lz 0] and SC;, =
limpy, 0o SCr = [0 O4ps 0]. As N increases, the perturba-
tions A(n) and By (n) decrease. When N — oo, the effects of
the perturbations can be negligible and the effects of the imper-
fect spreading auto-correlation are captured in SC,. Hence,

R, (n) =078, (n) C1 (M)HHY CF (n)ST (n) + R; (n) + Ryy(n)
~ | N—oo0: SC1H HY SCH

P A
+ op SCH HY SCI + 021
k=2 '

~|N. 0002 SCL Hy HESC! + 021. (12)
Then, the Toeplitz displacement is performed on the covari-
ance matrix of the observation vector.

Ru(n) =Ry (n)(2:aM,2:aM)—Ry(n)(1:aM —1,1:aM —1)

=R/ (n) - R, (n)

=oISCyHHESCTH — o2sCTHHESCTH (13)
where the matrix notation B(i:j, k:1) denotes the sub-matrix
formed by truncating rows from  to j and columns from & to |
from matrix B, and SCT" and SC] are formed by removing the
first row and the last row of SCy, respectively. The displacement
in (13) holds because the components of the code sequences are
assumed to be independently distributed and stationary at the

chip rate. The details about this Toeplitz displacement proce-
dure can be found in {8]. Then the updated observation vector
in (13) contains only the information of the desired user and the
contributions from R; and R, are removed.

Now, the result of Toeplitz displacement is applied for the cor-
relation matching estimation method. Let ﬁy(n) denote some
estimator of R, (n) and Rj,(n) be the corresponding estimator
of Ry, (n), then

The estimation error matrix becomes

Ep(n) =Rn(n) — Ru(n)
=0iSC H H sCf
—o2SCTH, HF SCTH — Ry (n). (14)

The new estimation error can be defined with the squared Frobe-
nius norm of Ep,

Jn(n) = |[Ex(n)||7 = tr[En(n)E] (n)]. (15)

The cost function (15) can be built as the cumulative error

1 N, 1 Ny
I = E;Jh(n)ZE;”[Eh(n)EhH(n)l

1 O
= ¥ Z vecH [Ep(n)]vec[Ex(n))]. (16)
S n=1

The channel parameters can be obtained by minimizing this cost
function. In practice, the average correlation matrix R, is sam-
pled and formed by

Ry(n) = 1 > ¥(m)y™ (n).

n=1 n=1

A7)

The estimated Ry, can be similarly formed. We define new un-
knowns by

D, = o?H;HY. (18)
The error matrix (14) becomes
En(n) = SCID;SCTH —SCTDiSCTH —Ri(n)  (19)

and

vec(Ep(n)) = (SCT* ® SC{ — SCT* @ SCT )vec(Dy)

—vec(Rp(n)). (20)

Then let
d; = vec(Dy), 21
Q=SC{*®S8C] —SC;*®S8Cy. (22)

We have

31 (n) = {Qd; — vec(Ry(n))} 7 {Qd; — vec(Rx(n))}. (23)
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Therefore, the cost function becomes

N,
- j\rl_sz{le —vec(Rp (1)) }{Qd; —vec(Ry(n))}. (24)

Thus, a quadratic cost function of new unknowns is obtained by
over-parameterizing the problem given in (21).

Let us now consider the estimate of (24). Based on the cost
function, an adaptive algorithm is to be derived by considering
J1(n) at time n. The least mean square (LMS) recursion can be
formulated for d; with step size u

"V = a" — uV gudn(n) (25)
where uV de r(n) is a function of dﬁ") and computed by
,qu{JJh (n) = QHngn) — QT vec[Ry (n)). (26)
Here, Q is approximately approached by
Q=sc gsc; -sc; " esc;, @7)

where Stir and St; are formed by removing the first and the
last rows of SCq, respectively.

N
SC, = Ni g:‘lsl(n)cl n (28)
Based on (25) and (26), d; can be updated by
d§"+1’ = d(ln) - ,uQHngn) + uQHvec[ﬁh(n)] (29)
and consequently, D" ™) can be reconstructed from alm .,

Once D, is found by the adaptive implementation, singular
value decomposition (SVD) on D; can be performed to obtain
its eigenvector corresponding to the unique maximum eigen-
value, which is the estimated and normalized channel vector for
desired user within a phase ambiguity.

Some issues have to be considered for practical 1mplementa-
tion. Normalization of the resulting channel estimate is needed
to remove the effect of the scalar ambiguity. To further improve
the channel estimate, a cleaning operation is needed for the sam-
ple covariance matrix.

The asymptotic behavior of the adaptive algorithm is consid-
ered for the step size u. Let Ad™ = E[d{™] — d; be the bias
at time n. By subtracting dy on both sides of (29) and taking
expectation, we obtain

AdTTY = [ - uE[Q7 Q) Ad + LEIQ vee Ry (n)]
—ME[QHQ]
~ (1 - pE[O" QNAd™ = (1 - pu)ad™  (30)

where U is a constant matrix characterized by the given sys-
tem parameters. This equation implies that the convergence of
the proposed adaptive method depends on the eigenvalue of ma-
trix I — pU. The necessary condition on the step size is then
|1 — uX;| < 1V i, where \;’s are the eigenvalues of U. Equiv-
alently, 0 < g < 1/Amax-
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Fig. 1. MSE versus the number of the symbols (SNR = 15 dB).

IV. SIMULATION RESULTS

During the simulations, long spreading codes of transmitted
bits of all users are assumed to take values from independent
equiprobable random variables +1 and —1. The data are regen-
erated randomly for each run of the simulation and the channel
coefficients for all users are also randomly produced from in-
dependent complex Gaussian random variables. It is noted that
the estimator for channel vector has a complex scalar ambiguity.
To simplify the presentation and avoid the norm ambiguity, the
following MSE is used as the performance measure.

1
MSEzﬁz

T =1

i 2
By — (/)

€1y

where N, is the number of runs in the simulation. We select
N, = 50 for each simulation in our examples. The true channel
is denoted by h; and the channel estimate for run i is represented

by flzl Thus, the channel estimator is normalized, as discussed
previously.

Let us first study the convergence of the proposed algorithm.
The MSE is plotted as a function of the number of symbols in
Fig. 1. The simulations are made for K = 10 and 12 and SNR
= 15 dB, and the spreading gain is chosen as N = 35. As
illustrated in Fig. 1, convergence is achieved after 200 symbols.

Next let us consider the MSE performance as a function of a
which is the number of the whole symbols used in the observa-
tion vector. The environment parameters are K = 8, SNR = 12
dB, spreading gain N = 35, and the number of the transmitted
symbols is Ny = 200. Fig. 2 shows the MSE values versus a for
two different channel lengths M = 4 and M = 5, respectively.

It can be seen that the MSE performance is not good enough
when one complete symbol is used. However, significant im-
provements can be achieved after two complete symbols are
used in the estimation. Therefore, we choose a = 2 as a suitable
choice for the following simulations.

We now consider the effects of the spreading factor on the es-
timation performance. Fig. 3 shows the MSE versus the spread-
ing gain for K = 10 and 12 users, which are obtained by the
proposed method, the correlation matching (CM) method in [6]
and the Toeplitz displacement (TD) method in [8]. Different
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Fig. 2. MSE versus a for K = 8 and SNR = 15 dB.
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Fig. 3. MSE versus spreading gain for SNR = 15 dB.

random channels with length M = 5, SNR = 15 dB, and 200
transmitted symbols for all users are used in the simulation.

Fig. 3 shows that the MSE reduces as NV increases. The rea-
son is that the spreading sequences become increasingly orthog-
onal with each other as the increase of the spreading gain. It is
also observed that, for small values of the spreading gain, the
proposed algorithm has no superiority to the other methods, but
when the spreading gain N > 35, it achieves a better MSE per-
formance compared to the methods reported in {6] and [8]. This
is because that the displacement is based on the approximation:
Spreading gain N — oco. When N is small, the approxima-
tion is not accurate enough and therefore the performance is not
improved. When N is large to achieve more accurate approxi-
mation, the proposed method can suppress the effects of channel
noise and interference by using the Toeplitz displacement oper-
ation and, at the same time, achieve better estimation with the
correlation matching method.

The capability of near-far resistance for the three estimation
methods is compared as follows. As described in previous sec-
tions, the matched filter preprocessing provides multiple access
interference suppression and the Toeplitz displacement removes
the remaining interference significantly. As a result, the pro-
posed method is expected to improve the near-far resistance.

—— Proposed, K=10

— O~ CMin[6], K=10 ny
B TDin[8], K=10 R
—&— Proposed, K=12 ,/// E

104 b —®— CMin[6), k=12 = .;5’$
A TDin[8], K=12 s -

0 S
Near-far ratio (dB)

Fig. 4. MSE evolution for a near-far environment.

—~&— Proposed
—&— TDin [8)
—©- CMin [6]

10’2 M ' M i 1 Fa— A M
8 10 12 14 16 18 20
SNR (dB)

Fig. 5. BER versus SNRs.

The near-far ratio is defined as 20log( A1 /Ax) dB, where Ay
is the received amplitude of the desired user and Ay is the re-
ceived amplitude of other interfering users. Let us fix the power
of the desired user and change the power of interfering users. It
is assumed that all interfering users have the same power. We
test the performance as the function of near-far ratio and com-
pare the results with the methods described in [6] and [8]. The
simulated system has K = 10 and 12 users, N = 40, SNR =
15dB, a = 2, M = 5, and 200 transmitted symbols.

Fig. 4 shows that as the near-far ratio increases, the proposed
method achieves substantially better performance in suppressing
the strong interference. Since the MSE changes slowly as the
increase of the near-far ratio, the proposed method is very robust
against near-far problem.

Finally, the bit error rate (BER) performance is obtained by
using the estimated channel for a RAKE receiver with param-
eters N = 35, M = 5, and K = 10. Fig. 5 compares the
BERSs obtained by using three estimation methods, which again
illustrates that the best BER is achieved by using the proposed
estimation method.
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V. CONCLUSIONS

This paper presents a method of blind adaptive multipath
channel estimation for long code DS-CDMA systems. Be-
cause the cross-correlation functions of the random spreading
sequences in such systems vary with the time, the use of the
asymptotic statistics of such spreading codes is made to deal
with this difficult problem. The contribution of channel noise
and interference is removed by applying the Toeplitz displace-
ment on the covariance matrix of the output vector before the
correlation matching method is explored to obtain the multipath
channel estimation. Simulation results show that the proposed
technique substantially improves the MSE performance and ro-
bustness against the near-far problem.
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