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ABSTRACT

Blind identification and equalization of communication
channel is important because it does not need training sequence,
nor does it require a priori channel information. So, we can
increase the bandwidth efficiency. The linear prediction error
method is perhaps the most attractive in practice due to the
insensitive to blind channel estimator and equalizer length
mismatch as well as for its simple adaptive algorithms. In this
paper, we propose method for fractionally spaced blind
equalizer with arbitrary delay using one-step forward prediction
error filter from second-order statistics of the received signals
for SIMO channel. Our algorithm utilizes the forward prediction
error as training sequences for data estimation and desired signal
for channel estimation.

I. INTRODUCTION

Multipath propagation appears to be a typical limitation in
mobile digital communication where it leads to severe
intersymbol interference (ISI). The classical techniques to
overcome this problem use either periodically sent training
sequence or blind techniques exploiting higher order statistics
(HOS). Adaptive equalization using training sequence wastes
the bandwidth efficiency but in blind equalization, no training is
needed and the equalizer is obtained only with the utilization of
the received signal. Since the seminal work by Tong et al. the
problem of estimating the channel response of multiple FIR
channel driven by an unknown input symbol has interested
many researchers in the signal processing areas and
communication fields[2}{3][4].

For the most part, algebraic and second-order statistics (SOS)
techniques have been proposed that exploit the structural
techniques (Hankel, Toeplitz matrix, et al.) of the single-input
multiple-output (SIMO) channel or data matrices. The
information on channel parameters or transmitted data is
typically recovered through subspace decomposition of the
received data matrix (deterministic method) or that of the
received data correlation matrix (stochastic method). Although
very appealing from the conceptual and signal processing
techniques point of view, the use of the aforementioned
techniques in real world applications faces serious challenges.
Subspace-based techniques lay in the fact that they relay on the
existence of numerically well-defined dimensions of the noise-
free signal or noise subspaces. Since these dimensions are
obviously closely related to the channel length, subspace-based

techniques are extremely sensitive to channel order mismatch([5].

The prediction error method (PEM) offer an alternative to the
class of techniques above. PEM, which were first introduced by
Slock et al. and later refined by Meraim et al., exploited the i.i.d.
property of the transmitted symbols and apply a linear prediction
error filter on the received data. The PEM offers great practical
advantages over most other proposed techniques. First, channel
estimation using the PEM remains consistent in the presence of
the channel length mismatch.. This property guarantees the
robustness of the technique with respect to the difficult channel
length estimation problem. Another significant advantage of the
PEM is that it lends itself easily to a low-cost adaptive
implementation such as adaptive lattice filters. But the decision

delay cannot be controlled with existing one-step prediction
error method[5]{6](7].

In this paper, we propose method for blind equalizers with
arbitrary decision delay using one-step forward prediction error
filter (FPEF) and channel estimation. We utilize the forward
prediction error (FPE) as training signal for symbol estimation
and desired signal for channel estimation. Also, we derive an
adaptive algorithm for proposed method.

1I. PROBLEM STATEMENT

Let x(¢) be the continuous-time signal at the output of a noisy
communication channel

x(t)= Y s(k)h(t —kT) + (1) )
-
where s(k) denotes the transmitted symbol at time A7, #(¢)
denotes the continuous-time channel impulse response, and w7)
is additive noise. The fractionally spaced discrete-time model
can be obtained either by time oversampling or by the sensor
array at the receiver. The oversampled single-input single-output
(SISO) model results SIMO model as in Fig. 1. The
corresponding SIMO model is described as follows
L~
x(n) =Y s(k)h(n—k)+v,(n), i=0L,P~1 (2)
k=0
where P is the number of subchannel, and L is the maximum
order of the P subchannel.
Let

x(n) =[xy (n)+xp (W]
h(n) =[ho(n)-hp (W] 3)
v(n) =[vy(n)---vp, (M)

We represent x,(n) in a vector form as

x(n) = Es(k)h(n ~k)+v(n) )

Stacking N received vectors samples into an (NPx1)-vector, we
can write a matrix equation as

X, () = Hs(n) + v , () ®
where H is a NPx(N+L) block Toeplitz matrix, s(n) is (N+L)x1,
Xp(n), and vp(n) are NPx1 vectors.

s(n) =[s(n)---s(n-L-N+1J

Xy(my=[x"(n)--x"(n-N+D]’ (6)
vy (N)=[v' (0)--v (n=N+1)]
h(0) hL-1) - O
H=| : - : : )
0 - hQ WI-1)

We assume the following throughout in this paper.

Al) The input sequence s(n) is zero-mean and white with
variance g,
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Fig. 1. The multichannel representation of a 7/P-spaced equalizer,

A2) The additive noise v(n) is stationary with zero mean and
white with variance ¢

The sequences s(n) and v(n) are uncorrelated.

The matrix H has full rank, i.e., the subchannels 4(#n) have
no COmmon zeros (o satisfy the Bezout equation.

AS) The dimensions of H obey NP>L+N.

Consider an FIR linear ZF- or MMSE-equalizer shown in
Figure 1, where g,(n) for i=0,1,..., P-1 is the order N equalizer
of the ith subchannel. The equalizer impulse response in vector
form is

A3)
A4)

g =[go(n), g (NI ®
A D-delay equalizer vector of length NP is given as
g, =[87(0), . g" (V-1 ®

and the symbol is estimated from
$(n—-D)=gpx,(n) (10)
The output of the equalizer approaches s, ;, for some decision
delay D. Then this equalizer is known as the D-delay ZF-
equalizer. According to (5)-(7), x,{n) has nonzero correlation
with only s(n),...,s(n—N-L+1). Therefore, decision delay
D is usually in the interval [0, N+L-I]. For finite SIMO
channels, blind equalizer of the finite length can be found if
assumption A4) holds and the equalizer length N>L(P-1) [7].

III. DATA AND CHANNEL ESTIMATION

A. Multichannel Linear Prediction
Consider the following multichannel
prediction problem
f, (M) =x(m)-[px(n—1)+---+p,x(n—N)] an
=[I, =Py lxy,(n)
where —p, for k=1 ..., N are Px P matrices of a FPEF of order N.
The FPEF coefficients are selected such that mean square

value of fi(n), i.c., E[|ifp{(n)||*], is minimized. Therefore, for
any set of FPEF coefficients Px

one-step forward

H
LG v
op;
We obtain as following
r(0) r(l) r(N=-Dip, r(l)
H —
r :(l) r(:O) r(N: 2) p:2 - r(:2) 3
r(N=1) r"(N-2) @) jpy} (r(V)

where r(i—/)=E[x(n~ Hx(n -1

When the FPEF is optimum in the sense of MSE, the input
signal vector Xy, (n) and the prediction error fy(n) are
orthogonal. Therefore,

E[X . (mfy (m)]=0 (14)
As shown in [5] and {6], we obtain
£ (1) =h(0)s(n) (15)

To achieve fast convergence, we can use the RLS algorithm
to update the FPEF as following:
» Compute output:

X(n) =Py (n)x , (n~1)
» Compute FPE:

(16)

f,(n)=x(n)—-x(n) a7
« Compute Kalman gain:
_ X'Q(n=Dx,(n-1)
KO = -0 -, iy
* Update inverse of the correlation matrix:
Q) =X"Qn =D -X"'K(m)xj (n-1)Qn~1)  (19)
*» Update FPEF coefficients:
P,(n)=P,(n=1)+f, ()K" (n) (20)

The term A(0<A<1) is intended to reduce the effect of past
values on the statistics when the filter operates in nonstationary
environment. It affects the convergence speed and the tracking
accuracy of the algorithm{1]. The FPEF coefficients can also be
computed by an LMS algorithm. In a simple manner, the FPE
can be computed by (16) and (17), and the FPEF coefficients
can be updated by

Py(n) =P, (n=1)+pfy(mxy(n~1)

where p, the adaptation step-size, is a positive constant.

2n

B. Best Delayed Symbol Estimation and Channel Estimation

Let us first consider MMSE-equalization. A zero-delay
MMSE-equalizer can be obtained as shown in [6] and {7]

g =oth” (OF [, ~P,] 22)
where F is the covariance matrix of f(n) as following
F = E[f, (m)f} (n)] = o7h(0)h " (0) " (23)

A zero-delay ZF-equalizer can also be obtained from FPEF as
shown in [6] and [7]
"0

z 1, -P, 2
& ilh(O)II[ J @9

where [|h(0)|| is the Euclidean norm of h(0).

When additive noise v(n)=0, the MMSE- and ZF-equalizer
become equivalent. But in noisy environment, MMSE-equalizer
has better performance than ZF-equalizer generally[2][7].

As described in [13], multistep prediction has been suggested
as a solution to the arbitrary decision delay equalization problem.
The multistep prediction error can be modeled as an output of a
truncated channel with no additive noise. The equalization of
[12] is proposed a combination of two multistep FPEF. The
equalization of [7] consists of a cascade of a multistep FPEF and
one-step BPEF. Multistep prediction-based method require two
prediction error filters and need to estimate channel coefficient
corresponding to decision delay[9].

It is obvious that multistep prediction-based methods are
required more computational complexity than one-step FPEF-
based methods and, moreover, needed to channel identification
procedure before equalization. But one-step FPEF-based method
are needed to first channel coefﬁcient, h(0) only. A feasible
solution for estimation of the h(0) is given in [5], where the
additive noise ignored. More accurate method is eigen-pair
tracking using the covariance matrix of PE in (23)[6][11].

We propose new method for arbitrary decision delay blind
equalizer based on one-step FPEF. As described in (15), FPE
contains transmitted symbol and it can be used as a training
sequence. Proposed method consists of four functional blocks.
First part functions FPEF to produce FPE, second part estimates
channel coefficient, h(0), third part choose best decision delay,
and fourth part is fractionally-spaced linear equalizers (FSLE).

From the covariance matrix of FPE in (23), its estimation of
adaptive manner is given by

F(n) = AF(n=1) + £, () (n) 25)
Compared with (23), h(0) is the column of F(n) with the largest

norm. We can use either of the following equations to obtain the
ZF- and MMSE-equalizer outputs[6][7].

Snese (1) = 620" (O)F ™ (m)f , (1)

3 hH(o)
Sz(n) = ThOE £ (n)

(26)
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It should be noted that the MMSE equalizer is designed for
transmitted symbol recovery at specific decision delay. Thus,
different decision delay can result in different performance. A
recursive form to get best decision delay is discussed in [8], [10],
and [14]. To get best decision delay choice, [8} and [10] propose
the minimizing MSE is given by

Juse(D)=1-HY(D)R"H(D) Q@7
where H(D) is the (D+1)th block column of the channel
convolution matrix H and R is the autocorrelation matrix of
oversampled received signal. But it is not very useful because H
is unknown. If the transmitted symbols have constant modulus
(CM), which is practical case in digitally modulated signal such
as QAM or PSK, the best decision delayed blind equalizer can
be determined by the following CM index (14]

Jem(D) =Y (gpxy(m) [P 1) (28)
The blind equalizer having the smallest Jysg or Jom value will
be considered as the best decision delayed blind equalizer. In
many practical channels, it has been observed [2] that selecting
D=(N+L)/2 results in good performance. For given MMSE- or
CM-sense optimized decision delay D, we can get training-like
sequence, #(n), as following

typ(n)=38,(n—-D)

A . 29)
tyamse (1) = Syyse (n— D)
The output of FSLE is given by
P-1
y) =Y ¢} (0)x,(n) (30)
k=0

where ¢y(n) is the equalizer coefficients of the kth subchannel
and x,(n) is the input vector of the kth subchannel

¢, (n)=[c, o(m),c; (M), -, 5oy (”)]T

X, (1) =[x, (n),x,(n=1),-,x, (n=N+ D]
We can use the LMS algorithm to update the equalizer
coefficients as following

¢, (n+)=c,(n)+pe" (n)x,(n), fork=0,--,P-1 (32)
where e(n) is either tze{n)—y(n) for ZF criterion or fymse(n)—
¥(n) for MMSE criterion.

Using estimated symbol, we regard the estimated symbol as
the desired signal for basic adaptive identification block. We
estimated the delay-optimized symbol, §(# — D). For this
applications of the adaptive channel estimation, the adaptation
algorithm can be implemented only with a delay in the
coefficient update. This so-called delay LMS (DLMS) algorithm
is given by

@3n

Wi (n+1) =W, (1) + pej (n = D)x; (n = D)

e,(n—D)=§n~-D)—wi (n-D)x, (n-D)
where
Wi () =[wi (n),,w (n— L+ D] k=0, P~1 (34)

(33

IV. SIMULATION RESULTS

In this section, we use computer simulations to evaluate the
performance of the proposed algorithm. The source symbols are
drawn from a 16-QAM constellation with a uniform distribution.
The noise is drawn from a white Gaussian distribution at a
varying SNR. As shown in Figure 1. we can define the SNR as

follows
SNR = E[§|a,(n)|z]/E[§|vk(n)lz]
k=0

=0

(35)

As a performance index, we estimate the MSE, which is defined in [6].

All results concerning MSE are ensemble averages of 50
independent Monte_Carlo runs. Algorithm initialization
parameters are §=107, 1=0.995, and §=0.005. The number of
subchannels is set to P=2. For all simulations, we use the RLS
algorithm for updating FPEF coefficient matrix and use MSE
criteria in (29) and (32). The simulated channel is a length-16
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Fig. 2. The best decision delay choice rule.
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Fig. 3. Scatter plots after equalization.
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Fig. 4. The MSE comparison under SNR=20dB and SNR=30dB.

version of an empirically measured 7/2-spaced digital
microwave radio channel (P=2) with 230 taps, which we
truncated to obtain a channel with L=8. The Microwave channel
chanl.mat is founded at http:/spib.rice.edu/spib/microwave.html.
The shortened version is derived by linear decimation of the
FFT of the full-length 7/2-spaced impulse response and taking
the IFFT of the decimated version (see [16] for more details on
this channel). In Fig. 2, we show the Jyse(D) and Jey(D) versus
decision delay D under SNR=30dB. The equalized received
signal constellation plots are shown in Fig. 3 for an SNR of
20dB and 30dB. We set FPEF length to 8, equalizer length N=8,
and choose the optimum delay, D=7 for this simulation. We
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Fig. 5. The Mean Square estimation Error.

compare the performance of the proposed algorithm with some
existing algorithms: the constant modulus algorithm in [1]
(denotes CMA), the one-step FPEF-based algorithm in [6] and
[7] (denotes FPEF), and the one-step BPEF-based algorithm in
[6] and [7] (denotes BPEF). We set both FPEF length and FSLE
order to 8 for proposed algorithm. Let the equalizer order be
N=18 for CMA, N=8§ for FPEF, and N=8 for BPEF. Fig. 4 shows
the MSE curves for the proposed algorithm and existing
algorithms under SNR=20 dB and 30dB, respectively. For
channel estimation, we set estimator order be L=8. Fig. 5 shows
the MSE curves for channel estimation using DLMS algorithm
with D=7 and D=0. Fig. 6 shows 50 estimates of the channel
under SNR=20dB. In this figures, solid line denotes the original
channel, dotted line denotes the averaged estimateststandard
deviation, and the circle symbol represents the mean valtue of the
50 estimates.

V. CONCLUSION

We have developed adaptive blind equalization based on one-
step FPEF with arbitrary decision delay control and channel
estimation. Our proposed method ensures flexible decision delay
control and provides flexibility for a practical implementation
since various well-known adaptive algorithms, including RLS
and LMS algorithm, can be used to implement the proposed
method. We consider FPE as training sequence and utilize it for
arbitrary decision delay blind equalization and channel
estimation. For symbol estimation, compared with HOS-based
algorithm such as CMA or cumulant algorithm, proposed
method is based on SOS; thus faster convergence can be
achieved with little computational complexity. The weakness of
the proposed method lies as well; the magnitude of the first
channel coefficient, h(0), should be sufficiently large. Further
research on the effect of this fact is needed. This aspect faces
also to previous PEF-based blind equalization problem. For
channel estimation, the proposed method seems to be more
efficient in a low SNR channel and much more accurate.
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