• Title/Summary/Keyword: Blade deformation

Search Result 111, Processing Time 0.03 seconds

Development of high performance and efficiency plastic axial fan by proximity cooling mold to minimize warpage (휨 변경 최소화 근접 냉각 금형을 통한 고성능 고효율 플라스틱 축류팬 개발)

  • Shin, Kwang-Ho;Kim, Mi-ae;Chea, Bo-Hae;Park, Sang-Wook;Kim, Yong-Dae
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • The cooling unit of the industrial showcase consists of a compressor, a condenser and an evaporator. An axial fan is used to circulate the air to improve the efficiency of the heat exchanger. In the past, aluminum fans have been used, which have problems such as low performance, efficiency, high failure rate, and high noise. This study is to develop high performance, high efficiency plastic fan replacing aluminum fan. A major factor in determining the performance and noise of an axial fan is the angle and cross-sectional shape of the blade, which is suitable for raising the lift force, thereby controlling the vortex, which is the main cause of noise and performance degradation. In order to produce a high efficiency injection molded fan, it is necessary to develop a mold that minimizes the deformation of the injection process for the designed shape. In this study, we developed a high efficiency, low noise plastic injection fan with more than 11% performance improvement and noise reduction compared to conventional aluminum fan.

Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine Blades (터보펌프 터빈 블레이드 형상 요소의 구조적 영향)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Structural effects of several geometric parameters such as shroud thickness, edge roundness and fillet radius of turbopump turbine blade were investigated throughout transient finite element analyses. Usually shroud is inserted to increase aerodynamic efficiency, but blocks deformation of blades. Therefore it can increase stress level in a structural point of view. Likewise, edge roundness and fillet between blades are also parameters where aerodynamics and structural mechanics should compromise. In this study, overall stress levels according to the geometric parameters were thoroughly investigated and the results could be utilized to determine optimal geometries.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

Investigation of the changes in texture of soybean sprout depending on the heating conditions in sous-vide and conventional hot water cooking (Sous-vide가열과 열탕가열 조건에 따른 콩나물 머리와 줄기의 조직감 변화에 관한 연구)

  • Lee, Yun Ju;Jung, Hwabin;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • The purpose of this study was to investigate the effect of thermal treatments, such as a sous-vide and a conventional hot water cooking, on the texture changes of soybean sprout. A novel method to measure texture properties of soybean sprout have been determined because of the irregular geometry of soybean sprout. The shape of cotyledon of bean spout was accurately analyzed using an image processing and a geometry model. To minimize the effect of the contact area on the texture measurement, a blade type of probe was selected for the measurement. True stress was evaluated to reflect the shape changes during deformation, and demonstrated that the measurement accurately distinguished the effect of thermal treatment on the texture. Different heating time (i.e., 0, 10, 20, and 30 min) was applied for both sous-vide and conventional cooking. Thermal processing caused hardening of textures for both cotyledon and hypocotyl of soybean sprout. The conventional cooking method showed higher stress values than those of sous-vide cooking. Sprouts cooked by sous-vide released the moisture after thermal processing while sprout cooked by a conventional water bath method could hold the moisture content during thermal processing. The soybean sprouts treated by conventional cooking method showed a higher score in sensory evaluation.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method (비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계)

  • Kim, Hyun-Duk;Yoo, Si-Yoong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.612-619
    • /
    • 2010
  • In this paper, an elastomeric bearing for a helicopter rotor hub is designed using nonlinear finite element method. The elastomeric bearing is the main component of the helicopter rotor hub that acts as a hinge to three motions(flapping, lagging and pitching) of rotor blade. The elastomeric bearing consists of rubber and metal plates. The stiffness design of the elastomeric bearing is important because elastic deformation of rubber is served to hinge. Accordingly, the elastomeric bearing is designed to satisfy the stiffness requirements for rotor hub bearing. In this study, a FE model generation algorithm is developed and stiffness characteristic of a rubber plate is analyzed for an efficient design of the spherical elastomeric bearing. It is proven that the elastomeric bearing satisfies stiffness requirements of the spherical bearing for a helicopter rotor hub.

A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox (풍력발전기 증속기에 전달되는 풍하중 변동특성 연구)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, normal wind load and blast wind load are modeled mathematical. And the periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train. In normal wind load case, excitation frequency is 3X (X : Rotor speed). When the wind direction is $+22.5^{\circ}$, the horizontal axis of bending moment occur the 50% of main torque. This result leads to edge contact of gear teeth by shaft elastic deformation. In blast wind load case, excitation frequency are 3X,6X,9X. Additional, in the (+) direction of wind load, relative harmonic percentage is increase.

A Study on the Characterization of Electroless and Electro Plated Nickel Bumps Fabricated for ACF Application (무전해 및 전해 도금법으로 제작된 ACF 접합용 니켈 범프 특성에 관한 연구)

  • Jin, Kyoung-Sun;Lee, Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • Nickel bumps for ACF(anisotropic conductive film) flip chip application were fabricated by electroless and electro plating and their mechanical properties and impact reliability were examined through the compressive test, bump shear test and drop test. Stress-displacement curves were obtained from the load-displacement data in the compressive test using nano-indenter. Electroplated nickel bumps showed much lower elastic stress limits (70MPa) and elastic moduli ($7.8{\times}10^{-4}MPa/nm$) than electroless plated nickel bumps ($600-800MPa,\;9.7{\times}10^{-3}MPa/nm$). In the bump shear test, the electroless plated nickel bumps were deformed little by the test blade and bounded off from the pad at a low shear load, whereas the electroplated nickel bumps allowed large amount of plastic deformation and higher shear load. Both electroless and electro plated nickel bumps bonded by ACF flip chip method showed high impact reliability in the drop impact test.

  • PDF

Cracking Near a Hole on a Heat- Resistant Alloy Subjected to Thermo-Mechanical Cycling (열 및 기계적 반복하중 하의 내열금속 표면 홀 주변 산화막의 변형 및 응력해석)

  • Li, Feng-Xun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1227-1233
    • /
    • 2010
  • In the hot section of a gas turbine, the turbine blades were protected from high temperature by providing a thermal barrier coating (TBC) as well as by cooling air flowing through internal passages within the blades. The cooling air then passed through discrete holes on the blade surface, creating a film of cooling air that further protects the surface from the hot mainstream flow. The holes are subjected to stresses resulting from the lateral growth of thermally grown oxide, the thermal expansion misfit between the constituent layers, and the centrifugal force due to high-speed revolution; these stresses often result in cracking. In this study, the deformation and cracks occurring near a hole on a heat-resistant alloy subjected to thermo-mechanical cycling were investigated. The experiment showed that cracks formed around the hole depending on the applied stress level and the number of cycles. These results could be explained by our analytic solution.